Files
MultimodalOCR/OCRBench/example.py

187 lines
9.1 KiB
Python
Raw Permalink Normal View History

2024-01-16 17:26:24 +08:00
import json
from argparse import ArgumentParser
import torch
import os
import json
from tqdm import tqdm
from PIL import Image
import math
import multiprocessing
from multiprocessing import Pool, Queue, Manager
# TODO model packages import
# from transformers import AutoModelForCausalLM, AutoTokenizer
def split_list(lst, n):
length = len(lst)
avg = length // n # 每份的大小
result = [] # 存储分割后的子列表
for i in range(n - 1):
result.append(lst[i*avg:(i+1)*avg])
result.append(lst[(n-1)*avg:])
return result
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file,indent=4)
def _get_args():
parser = ArgumentParser()
2024-02-14 11:39:30 +08:00
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
2024-01-16 17:26:24 +08:00
parser.add_argument("--output_folder", type=str, default="./results")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
parser.add_argument("--model_path", type=str, default="")#TODO Set the address of your model's weights
parser.add_argument("--save_name", type=str, default="") #TODO Set the name of the JSON file you save in the output_folder.
parser.add_argument("--num_workers", type=int, default=8)
args = parser.parse_args()
return args
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
def eval_worker(args, data, eval_id, output_queue):
print(f"Process {eval_id} start.")
checkpoint = args.model_path
# TODO model init
# model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda', trust_remote_code=True).eval()
# tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
# tokenizer.padding_side = 'left'
# tokenizer.pad_token_id = tokenizer.eod_id
for i in tqdm(range(len(data))):
img_path = os.path.join(args.image_folder, data[i]['image_path'])
qs = data[i]['question']
# TODO Generation process
# query = f'<img>{img_path}</img> {qs} Answer: '
# input_ids = tokenizer(query, return_tensors='pt', padding='longest')
# attention_mask = input_ids.attention_mask
# input_ids = input_ids.input_ids
# pred = model.generate(
# input_ids=input_ids.to(f'cuda:{eval_id}'),
# attention_mask=attention_mask.to(f'cuda:{eval_id}'),
# do_sample=False,
# num_beams=1,
# max_new_tokens=100,
# min_new_tokens=1,
# length_penalty=1,
# num_return_sequences=1,
# output_hidden_states=True,
# use_cache=True,
# pad_token_id=tokenizer.eod_id,
# eos_token_id=tokenizer.eod_id,
# )
# response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
data[i]['predict'] = response
output_queue.put({eval_id: data})
print(f"Process {eval_id} has completed.")
if __name__=="__main__":
multiprocessing.set_start_method('spawn')
args = _get_args()
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
else:
data_path = args.OCRBench_file
with open(data_path, "r") as f:
data = json.load(f)
data_list = split_list(data, args.num_workers)
output_queue = Manager().Queue()
pool = Pool(processes=args.num_workers)
for i in range(len(data_list)):
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
pool.close()
pool.join()
results = {}
while not output_queue.empty():
result = output_queue.get()
results.update(result)
data = []
for i in range(len(data_list)):
data.extend(results[i])
for i in range(len(data)):
data_type = data[i]["type"]
dataset_name = data[i]["dataset_name"]
answers = data[i]["answers"]
if data[i].get('predict',0)==0:
continue
predict = data[i]['predict']
data[i]['result'] = 0
if dataset_name == "HME100k":
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answers in predict:
data[i]['result'] = 1
else:
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answers in predict:
data[i]['result'] = 1
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
if len(data)==1000:
for i in range(len(data)):
if data[i].get("result",100)==100:
continue
OCRBench_score[data[i]['type']] += data[i]['result']
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
print("###########################OCRBench##############################")
print(f"Text Recognition(Total 300):{recognition_score}")
print("------------------Details of Recognition Score-------------------")
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
print("----------------------------------------------------------------")
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
print("----------------------------------------------------------------")
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
print("----------------------------------------------------------------")
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
print("----------------------------------------------------------------")
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
print("----------------------Final Score-------------------------------")
print(f"Final Score(Total 1000): {Final_score}")
else:
for i in range(len(data)):
num_all[data[i]['dataset_name']] += 1
if data[i].get("result",100)==100:
continue
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
for key in AllDataset_score.keys():
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")