Files
Grounded-SAM-2/grounded_sam2_hf_model_demo.py
2024-08-01 17:58:42 +08:00

115 lines
3.5 KiB
Python

import cv2
import torch
import numpy as np
import supervision as sv
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
# environment settings
# use bfloat16
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# build SAM2 image predictor
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
sam2_predictor = SAM2ImagePredictor(sam2_model)
# build grounding dino from huggingface
model_id = "IDEA-Research/grounding-dino-tiny"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# setup the input image and text prompt for SAM 2 and Grounding DINO
# VERY important: text queries need to be lowercased + end with a dot
text = "car. tire."
img_path = 'notebooks/images/truck.jpg'
image = Image.open(img_path)
sam2_predictor.set_image(np.array(image.convert("RGB")))
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = grounding_model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4,
text_threshold=0.3,
target_sizes=[image.size[::-1]]
)
"""
Results is a list of dict with the following structure:
[
{
'scores': tensor([0.7969, 0.6469, 0.6002, 0.4220], device='cuda:0'),
'labels': ['car', 'tire', 'tire', 'tire'],
'boxes': tensor([[ 89.3244, 278.6940, 1710.3505, 851.5143],
[1392.4701, 554.4064, 1628.6133, 777.5872],
[ 436.1182, 621.8940, 676.5255, 851.6897],
[1236.0990, 688.3547, 1400.2427, 753.1256]], device='cuda:0')
}
]
"""
# get the box prompt for SAM 2
input_boxes = results[0]["boxes"].cpu().numpy()
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
"""
Post-process the output of the model to get the masks, scores, and logits for visualization
"""
# convert the shape to (n, H, W)
if masks.ndim == 3:
masks = masks[None]
scores = scores[None]
logits = logits[None]
elif masks.ndim == 4:
masks = masks.squeeze(1)
confidences = results[0]["scores"].cpu().numpy().tolist()
class_names = results[0]["labels"]
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
"""
Visualize image with supervision useful API
"""
img = cv2.imread(img_path)
detections = sv.Detections(
xyxy=input_boxes, # (n, 4)
mask=masks, # (n, h, w)
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections, labels=labels)
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)