Files
Grounded-SAM-2/utils/common_utils.py
2024-08-09 19:14:20 +08:00

162 lines
7.0 KiB
Python

import os
import json
import cv2
import numpy as np
from dataclasses import dataclass
import supervision as sv
import random
class CommonUtils:
@staticmethod
def creat_dirs(path):
"""
Ensure the given path exists. If it does not exist, create it using os.makedirs.
:param path: The directory path to check or create.
"""
try:
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
print(f"Path '{path}' did not exist and has been created.")
else:
print(f"Path '{path}' already exists.")
except Exception as e:
print(f"An error occurred while creating the path: {e}")
@staticmethod
def draw_masks_and_box_with_supervision(raw_image_path, mask_path, json_path, output_path):
CommonUtils.creat_dirs(output_path)
raw_image_name_list = os.listdir(raw_image_path)
raw_image_name_list.sort()
for raw_image_name in raw_image_name_list:
image_path = os.path.join(raw_image_path, raw_image_name)
image = cv2.imread(image_path)
if image is None:
raise FileNotFoundError("Image file not found.")
# load mask
mask_npy_path = os.path.join(mask_path, "mask_"+raw_image_name.split(".")[0]+".npy")
mask = np.load(mask_npy_path)
# color map
unique_ids = np.unique(mask)
# get each mask from unique mask file
all_object_masks = []
for uid in unique_ids:
if uid == 0: # skip background id
continue
else:
object_mask = (mask == uid)
all_object_masks.append(object_mask[None])
# get n masks: (n, h, w)
all_object_masks = np.concatenate(all_object_masks, axis=0)
# load box information
file_path = os.path.join(json_path, "mask_"+raw_image_name.split(".")[0]+".json")
all_object_boxes = []
all_object_ids = []
all_class_names = []
object_id_to_name = {}
with open(file_path, "r") as file:
json_data = json.load(file)
for obj_id, obj_item in json_data["labels"].items():
# box id
instance_id = obj_item["instance_id"]
if instance_id not in unique_ids: # not a valid box
continue
# box coordinates
x1, y1, x2, y2 = obj_item["x1"], obj_item["y1"], obj_item["x2"], obj_item["y2"]
all_object_boxes.append([x1, y1, x2, y2])
# box name
class_name = obj_item["class_name"]
# build id list and id2name mapping
all_object_ids.append(instance_id)
all_class_names.append(class_name)
object_id_to_name[instance_id] = class_name
# Adjust object id and boxes to ascending order
paired_id_and_box = zip(all_object_ids, all_object_boxes)
sorted_pair = sorted(paired_id_and_box, key=lambda pair: pair[0])
# Because we get the mask data as ascending order, so we also need to ascend box and ids
all_object_ids = [pair[0] for pair in sorted_pair]
all_object_boxes = [pair[1] for pair in sorted_pair]
detections = sv.Detections(
xyxy=np.array(all_object_boxes),
mask=all_object_masks,
class_id=np.array(all_object_ids, dtype=np.int32),
)
# custom label to show both id and class name
labels = [
f"{instance_id}: {class_name}" for instance_id, class_name in zip(all_object_ids, all_class_names)
]
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=labels)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
output_image_path = os.path.join(output_path, raw_image_name)
cv2.imwrite(output_image_path, annotated_frame)
print(f"Annotated image saved as {output_image_path}")
@staticmethod
def draw_masks_and_box(raw_image_path, mask_path, json_path, output_path):
CommonUtils.creat_dirs(output_path)
raw_image_name_list = os.listdir(raw_image_path)
raw_image_name_list.sort()
for raw_image_name in raw_image_name_list:
image_path = os.path.join(raw_image_path, raw_image_name)
image = cv2.imread(image_path)
if image is None:
raise FileNotFoundError("Image file not found.")
# load mask
mask_npy_path = os.path.join(mask_path, "mask_"+raw_image_name.split(".")[0]+".npy")
mask = np.load(mask_npy_path)
# color map
unique_ids = np.unique(mask)
colors = {uid: CommonUtils.random_color() for uid in unique_ids}
colors[0] = (0, 0, 0) # background color
# apply mask to image in RBG channels
colored_mask = np.zeros_like(image)
for uid in unique_ids:
colored_mask[mask == uid] = colors[uid]
alpha = 0.5 # 调整 alpha 值以改变透明度
output_image = cv2.addWeighted(image, 1 - alpha, colored_mask, alpha, 0)
file_path = os.path.join(json_path, "mask_"+raw_image_name.split(".")[0]+".json")
with open(file_path, 'r') as file:
json_data = json.load(file)
# Draw bounding boxes and labels
for obj_id, obj_item in json_data["labels"].items():
# Extract data from JSON
x1, y1, x2, y2 = obj_item["x1"], obj_item["y1"], obj_item["x2"], obj_item["y2"]
instance_id = obj_item["instance_id"]
class_name = obj_item["class_name"]
# Draw rectangle
cv2.rectangle(output_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Put text
label = f"{instance_id}: {class_name}"
cv2.putText(output_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Save the modified image
output_image_path = os.path.join(output_path, raw_image_name)
cv2.imwrite(output_image_path, output_image)
print(f"Annotated image saved as {output_image_path}")
@staticmethod
def random_color():
"""random color generator"""
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))