Files
Grounded-SAM-2/lib/train/trainers/ltr_seq_trainer.py
2024-11-19 22:12:54 -08:00

323 lines
15 KiB
Python

import os
import datetime
from collections import OrderedDict
from torch.nn.utils import clip_grad_norm_
# from lib.train.data.wandb_logger import WandbWriter
from lib.train.trainers import BaseTrainer
from lib.train.admin import AverageMeter, StatValue
from memory_profiler import profile
# from lib.train.admin import TensorboardWriter
import torch
import time
import numpy as np
from torch.utils.data.distributed import DistributedSampler
from torch.cuda.amp import autocast
from torch.cuda.amp import GradScaler
from lib.utils.misc import get_world_size
class LTRSeqTrainer(BaseTrainer):
def __init__(self, actor, loaders, optimizer, settings, lr_scheduler=None, use_amp=False):
"""
args:
actor - The actor for training the network
loaders - list of dataset loaders, e.g. [train_loader, val_loader]. In each epoch, the trainer runs one
epoch for each loader.
optimizer - The optimizer used for training, e.g. Adam
settings - Training settings
lr_scheduler - Learning rate scheduler
"""
super().__init__(actor, loaders, optimizer, settings, lr_scheduler)
self._set_default_settings()
# Initialize statistics variables
self.stats = OrderedDict({loader.name: None for loader in self.loaders})
# Initialize tensorboard and wandb
# self.wandb_writer = None
# if settings.local_rank in [-1, 0]:
# tensorboard_writer_dir = os.path.join(self.settings.env.tensorboard_dir, self.settings.project_path)
# if not os.path.exists(tensorboard_writer_dir):
# os.makedirs(tensorboard_writer_dir)
# self.tensorboard_writer = TensorboardWriter(tensorboard_writer_dir, [l.name for l in loaders])
# if settings.use_wandb:
# world_size = get_world_size()
# cur_train_samples = self.loaders[0].dataset.samples_per_epoch * max(0, self.epoch - 1)
# interval = (world_size * settings.batchsize) # * interval
# self.wandb_writer = WandbWriter(settings.project_path[6:], {}, tensorboard_writer_dir, cur_train_samples, interval)
self.move_data_to_gpu = getattr(settings, 'move_data_to_gpu', True)
print("move_data", self.move_data_to_gpu)
self.settings = settings
self.use_amp = use_amp
if use_amp:
self.scaler = GradScaler()
def _set_default_settings(self):
# Dict of all default values
default = {'print_interval': 10,
'print_stats': None,
'description': ''}
for param, default_value in default.items():
if getattr(self.settings, param, None) is None:
setattr(self.settings, param, default_value)
self.miou_list = []
def cycle_dataset(self, loader):
"""Do a cycle of training or validation."""
torch.autograd.set_detect_anomaly(True)
self.actor.train(loader.training)
torch.set_grad_enabled(loader.training)
self._init_timing()
for i, data in enumerate(loader, 1):
self.actor.eval()
self.data_read_done_time = time.time()
with torch.no_grad():
explore_result = self.actor.explore(data)
if explore_result == None:
print("this time i skip")
# self._update_stats(stats, batch_size, loader)
continue
# get inputs
# print(data)
self.data_to_gpu_time = time.time()
data['epoch'] = self.epoch
data['settings'] = self.settings
stats = {}
reward_record = []
miou_record = []
e_miou_record = []
num_seq = len(data['num_frames'])
# Calculate reward tensor
# reward_tensor = torch.zeros(explore_result['baseline_iou'].size())
baseline_iou = explore_result['baseline_iou']
# explore_iou = explore_result['explore_iou']
for seq_idx in range(num_seq):
num_frames = data['num_frames'][seq_idx] - 1
b_miou = torch.mean(baseline_iou[:num_frames, seq_idx])
# e_miou = torch.mean(explore_iou[:num_frames, seq_idx])
miou_record.append(b_miou.item())
# e_miou_record.append(e_miou.item())
b_reward = b_miou.item()
# e_reward = e_miou.item()
# iou_gap = e_reward - b_reward
# reward_record.append(iou_gap)
# reward_tensor[:num_frames, seq_idx] = iou_gap
# Training mode
cursor = 0
bs_backward = 1
# print(self.actor.net.module.box_head.decoder.layers[2].mlpx.fc1.weight)
self.optimizer.zero_grad()
while cursor < num_seq:
# print("now is ", cursor , "and all is ", num_seq)
model_inputs = {}
model_inputs['slt_loss_weight'] = 15
if cursor < num_seq:
model_inputs['template_images'] = explore_result['template_images'][
cursor:cursor + bs_backward].cuda()
else:
model_inputs['template_images'] = explore_result['template_images_reverse'][
cursor - num_seq:cursor - num_seq + bs_backward].cuda()
model_inputs['search_images'] = explore_result['search_images'][:, cursor:cursor + bs_backward].cuda()
model_inputs['search_anno'] = explore_result['search_anno'][:, cursor:cursor + bs_backward].cuda()
model_inputs['pre_seq'] = explore_result['pre_seq'][:, cursor:cursor + bs_backward].cuda()
model_inputs['x_feat'] = explore_result['x_feat'].squeeze(1)[:, cursor:cursor + bs_backward].cuda()
model_inputs['epoch'] = data['epoch']
# model_inputs['template_update'] = explore_result['template_update'].squeeze(1)[:,
# cursor:cursor + bs_backward].cuda()
# print("this is cursor")
# print(explore_result['pre_seq'].shape)
# print(explore_result['x_feat'].squeeze(1).shape)
# model_inputs['action_tensor'] = explore_result['action_tensor'][:, cursor:cursor + bs_backward].cuda()
# model_inputs['reward_tensor'] = reward_tensor[:, cursor:cursor + bs_backward].cuda()
loss, stats_cur = self.actor.compute_sequence_losses(model_inputs)
# for name, param in self.actor.net.named_parameters():
# shape, c = (param.grad.shape, param.grad.sum()) if param.grad is not None else (None, None)
# print(f'{name}: {param.shape} \n\t grad: {shape} \n\t {c}')
# print("i make this!")
loss.backward()
# print("i made that?")
for key, val in stats_cur.items():
if key in stats:
stats[key] += val * (bs_backward / num_seq)
else:
stats[key] = val * (bs_backward / num_seq)
cursor += bs_backward
grad_norm = clip_grad_norm_(self.actor.net.parameters(), 100)
stats['grad_norm'] = grad_norm
# print(self.actor.net.module.backbone.blocks[8].mlp.fc1.weight)
self.optimizer.step()
# print(self.optimizer)
miou = np.mean(miou_record)
self.miou_list.append(miou)
# stats['reward'] = np.mean(reward_record)
# stats['e_mIoU'] = np.mean(e_miou_record)
stats['mIoU'] = miou
stats['mIoU10'] = np.mean(self.miou_list[-10:])
stats['mIoU100'] = np.mean(self.miou_list[-100:])
batch_size = num_seq * np.max(data['num_frames'])
self._update_stats(stats, batch_size, loader)
self._print_stats(i, loader, batch_size)
torch.cuda.empty_cache()
# # forward pass
# if not self.use_amp:
# loss, stats = self.actor(data)
# else:
# with autocast():
# loss, stats = self.actor(data)
#
# # backward pass and update weights
# if loader.training:
# self.optimizer.zero_grad()
# if not self.use_amp:
# loss.backward()
# if self.settings.grad_clip_norm > 0:
# torch.nn.utils.clip_grad_norm_(self.actor.net.parameters(), self.settings.grad_clip_norm)
# self.optimizer.step()
# else:
# self.scaler.scale(loss).backward()
# self.scaler.step(self.optimizer)
# self.scaler.update()
# update statistics
# batch_size = data['template_images'].shape[loader.stack_dim]
# self._update_stats(stats, batch_size, loader)
# print statistics
# self._print_stats(i, loader, batch_size)
# update wandb status
# if self.wandb_writer is not None and i % self.settings.print_interval == 0:
# if self.settings.local_rank in [-1, 0]:
# self.wandb_writer.write_log(self.stats, self.epoch)
# calculate ETA after every epoch
# epoch_time = self.prev_time - self.start_time
# print("Epoch Time: " + str(datetime.timedelta(seconds=epoch_time)))
# print("Avg Data Time: %.5f" % (self.avg_date_time / self.num_frames * batch_size))
# print("Avg GPU Trans Time: %.5f" % (self.avg_gpu_trans_time / self.num_frames * batch_size))
# print("Avg Forward Time: %.5f" % (self.avg_forward_time / self.num_frames * batch_size))
def train_epoch(self):
"""Do one epoch for each loader."""
for loader in self.loaders:
if self.epoch % loader.epoch_interval == 0:
# 2021.1.10 Set epoch
if isinstance(loader.sampler, DistributedSampler):
loader.sampler.set_epoch(self.epoch)
self.cycle_dataset(loader)
self._stats_new_epoch()
# if self.settings.local_rank in [-1, 0]:
# self._write_tensorboard()
def _init_timing(self):
self.num_frames = 0
self.start_time = time.time()
self.prev_time = self.start_time
self.avg_date_time = 0
self.avg_gpu_trans_time = 0
self.avg_forward_time = 0
def _update_stats(self, new_stats: OrderedDict, batch_size, loader):
# Initialize stats if not initialized yet
if loader.name not in self.stats.keys() or self.stats[loader.name] is None:
self.stats[loader.name] = OrderedDict({name: AverageMeter() for name in new_stats.keys()})
# add lr state
if loader.training:
lr_list = self.lr_scheduler.get_last_lr()
for i, lr in enumerate(lr_list):
var_name = 'LearningRate/group{}'.format(i)
if var_name not in self.stats[loader.name].keys():
self.stats[loader.name][var_name] = StatValue()
self.stats[loader.name][var_name].update(lr)
for name, val in new_stats.items():
if name not in self.stats[loader.name].keys():
self.stats[loader.name][name] = AverageMeter()
self.stats[loader.name][name].update(val, batch_size)
def _print_stats(self, i, loader, batch_size):
self.num_frames += batch_size
current_time = time.time()
batch_fps = batch_size / (current_time - self.prev_time)
average_fps = self.num_frames / (current_time - self.start_time)
prev_frame_time_backup = self.prev_time
self.prev_time = current_time
self.avg_date_time += (self.data_read_done_time - prev_frame_time_backup)
self.avg_gpu_trans_time += (self.data_to_gpu_time - self.data_read_done_time)
self.avg_forward_time += current_time - self.data_to_gpu_time
if i % self.settings.print_interval == 0 or i == loader.__len__():
print_str = '[%s: %d, %d / %d] ' % (loader.name, self.epoch, i, loader.__len__())
print_str += 'FPS: %.1f (%.1f) , ' % (average_fps, batch_fps)
# 2021.12.14 add data time print
print_str += 'DataTime: %.3f (%.3f) , ' % (
self.avg_date_time / self.num_frames * batch_size, self.avg_gpu_trans_time / self.num_frames * batch_size)
print_str += 'ForwardTime: %.3f , ' % (self.avg_forward_time / self.num_frames * batch_size)
print_str += 'TotalTime: %.3f , ' % ((current_time - self.start_time) / self.num_frames * batch_size)
# print_str += 'DataTime: %.3f (%.3f) , ' % (self.data_read_done_time - prev_frame_time_backup, self.data_to_gpu_time - self.data_read_done_time)
# print_str += 'ForwardTime: %.3f , ' % (current_time - self.data_to_gpu_time)
# print_str += 'TotalTime: %.3f , ' % (current_time - prev_frame_time_backup)
for name, val in self.stats[loader.name].items():
if (self.settings.print_stats is None or name in self.settings.print_stats):
if hasattr(val, 'avg'):
print_str += '%s: %.5f , ' % (name, val.avg)
# else:
# print_str += '%s: %r , ' % (name, val)
print(print_str[:-5])
log_str = print_str[:-5] + '\n'
with open(self.settings.log_file, 'a') as f:
f.write(log_str)
def _stats_new_epoch(self):
# Record learning rate
for loader in self.loaders:
if loader.training:
try:
lr_list = self.lr_scheduler.get_last_lr()
except:
lr_list = self.lr_scheduler._get_lr(self.epoch)
for i, lr in enumerate(lr_list):
var_name = 'LearningRate/group{}'.format(i)
if var_name not in self.stats[loader.name].keys():
self.stats[loader.name][var_name] = StatValue()
self.stats[loader.name][var_name].update(lr)
for loader_stats in self.stats.values():
if loader_stats is None:
continue
for stat_value in loader_stats.values():
if hasattr(stat_value, 'new_epoch'):
stat_value.new_epoch()
# def _write_tensorboard(self):
# if self.epoch == 1:
# self.tensorboard_writer.write_info(self.settings.script_name, self.settings.description)
# self.tensorboard_writer.write_epoch(self.stats, self.epoch)