Files
Grounded-SAM-2/lib/test/evaluation/running.py
2024-11-19 22:12:54 -08:00

184 lines
6.5 KiB
Python

import numpy as np
import multiprocessing
import os
import sys
from itertools import product
from collections import OrderedDict
from lib.test.evaluation import Sequence, Tracker
import torch
def _save_tracker_output(seq: Sequence, tracker: Tracker, output: dict):
"""Saves the output of the tracker."""
if not os.path.exists(tracker.results_dir):
print("create tracking result dir:", tracker.results_dir)
os.makedirs(tracker.results_dir)
if seq.dataset in ['trackingnet', 'got10k']:
if not os.path.exists(os.path.join(tracker.results_dir, seq.dataset)):
os.makedirs(os.path.join(tracker.results_dir, seq.dataset))
'''2021.1.5 create new folder for these two datasets'''
if seq.dataset in ['trackingnet', 'got10k']:
base_results_path = os.path.join(tracker.results_dir, seq.dataset, seq.name)
else:
base_results_path = os.path.join(tracker.results_dir, seq.name)
def save_bb(file, data):
tracked_bb = np.array(data).astype(int)
np.savetxt(file, tracked_bb, delimiter='\t', fmt='%d')
def save_time(file, data):
exec_times = np.array(data).astype(float)
np.savetxt(file, exec_times, delimiter='\t', fmt='%f')
def save_score(file, data):
scores = np.array(data).astype(float)
np.savetxt(file, scores, delimiter='\t', fmt='%.2f')
def _convert_dict(input_dict):
data_dict = {}
for elem in input_dict:
for k, v in elem.items():
if k in data_dict.keys():
data_dict[k].append(v)
else:
data_dict[k] = [v, ]
return data_dict
for key, data in output.items():
# If data is empty
if not data:
continue
if key == 'target_bbox':
if isinstance(data[0], (dict, OrderedDict)):
data_dict = _convert_dict(data)
for obj_id, d in data_dict.items():
bbox_file = '{}_{}.txt'.format(base_results_path, obj_id)
save_bb(bbox_file, d)
else:
# Single-object mode
bbox_file = '{}.txt'.format(base_results_path)
save_bb(bbox_file, data)
if key == 'all_boxes':
if isinstance(data[0], (dict, OrderedDict)):
data_dict = _convert_dict(data)
for obj_id, d in data_dict.items():
bbox_file = '{}_{}_all_boxes.txt'.format(base_results_path, obj_id)
save_bb(bbox_file, d)
else:
# Single-object mode
bbox_file = '{}_all_boxes.txt'.format(base_results_path)
save_bb(bbox_file, data)
if key == 'all_scores':
if isinstance(data[0], (dict, OrderedDict)):
data_dict = _convert_dict(data)
for obj_id, d in data_dict.items():
bbox_file = '{}_{}_all_scores.txt'.format(base_results_path, obj_id)
save_score(bbox_file, d)
else:
# Single-object mode
print("saving scores...")
bbox_file = '{}_all_scores.txt'.format(base_results_path)
save_score(bbox_file, data)
elif key == 'time':
if isinstance(data[0], dict):
data_dict = _convert_dict(data)
for obj_id, d in data_dict.items():
timings_file = '{}_{}_time.txt'.format(base_results_path, obj_id)
save_time(timings_file, d)
else:
timings_file = '{}_time.txt'.format(base_results_path)
save_time(timings_file, data)
def run_sequence(seq: Sequence, tracker: Tracker, debug=False, num_gpu=8):
"""Runs a tracker on a sequence."""
'''2021.1.2 Add multiple gpu support'''
try:
worker_name = multiprocessing.current_process().name
worker_id = int(worker_name[worker_name.find('-') + 1:]) - 1
gpu_id = worker_id % num_gpu
torch.cuda.set_device(gpu_id)
except:
pass
def _results_exist():
if seq.object_ids is None:
if seq.dataset in ['trackingnet', 'got10k']:
base_results_path = os.path.join(tracker.results_dir, seq.dataset, seq.name)
bbox_file = '{}.txt'.format(base_results_path)
else:
bbox_file = '{}/{}.txt'.format(tracker.results_dir, seq.name)
return os.path.isfile(bbox_file)
else:
bbox_files = ['{}/{}_{}.txt'.format(tracker.results_dir, seq.name, obj_id) for obj_id in seq.object_ids]
missing = [not os.path.isfile(f) for f in bbox_files]
return sum(missing) == 0
if _results_exist() and not debug:
print('FPS: {}'.format(-1))
return
print('Tracker: {} {} {} , Sequence: {}'.format(tracker.name, tracker.parameter_name, tracker.run_id, seq.name))
if debug:
output = tracker.run_sequence(seq, debug=debug)
else:
try:
output = tracker.run_sequence(seq, debug=debug)
except Exception as e:
print(e)
return
sys.stdout.flush()
if isinstance(output['time'][0], (dict, OrderedDict)):
exec_time = sum([sum(times.values()) for times in output['time']])
num_frames = len(output['time'])
else:
exec_time = sum(output['time'])
num_frames = len(output['time'])
print('FPS: {}'.format(num_frames / exec_time))
if not debug:
_save_tracker_output(seq, tracker, output)
def run_dataset(dataset, trackers, debug=False, threads=0, num_gpus=8):
"""Runs a list of trackers on a dataset.
args:
dataset: List of Sequence instances, forming a dataset.
trackers: List of Tracker instances.
debug: Debug level.
threads: Number of threads to use (default 0).
"""
multiprocessing.set_start_method('spawn', force=True)
print('Evaluating {:4d} trackers on {:5d} sequences'.format(len(trackers), len(dataset)))
multiprocessing.set_start_method('spawn', force=True)
if threads == 0:
mode = 'sequential'
else:
mode = 'parallel'
if mode == 'sequential':
for seq in dataset:
for tracker_info in trackers:
run_sequence(seq, tracker_info, debug=debug)
elif mode == 'parallel':
param_list = [(seq, tracker_info, debug, num_gpus) for seq, tracker_info in product(dataset, trackers)]
with multiprocessing.Pool(processes=threads) as pool:
pool.starmap(run_sequence, param_list)
print('Done')