Files
Grounded-SAM-2/utils/mask_dictionary_model.py
Susan Shen bf57b3086c fix: zero object detection error (#64)
* update dockerfile

* fix: zero object detection error

* fix: zero object detection error
2024-10-30 20:38:30 +08:00

176 lines
6.3 KiB
Python

import numpy as np
import json
import torch
import copy
import os
import cv2
from dataclasses import dataclass, field
@dataclass
class MaskDictionaryModel:
mask_name:str = ""
mask_height: int = 1080
mask_width:int = 1920
promote_type:str = "mask"
labels:dict = field(default_factory=dict)
def add_new_frame_annotation(self, mask_list, box_list, label_list, background_value = 0):
mask_img = torch.zeros(mask_list.shape[-2:])
anno_2d = {}
for idx, (mask, box, label) in enumerate(zip(mask_list, box_list, label_list)):
final_index = background_value + idx + 1
if mask.shape[0] != mask_img.shape[0] or mask.shape[1] != mask_img.shape[1]:
raise ValueError("The mask shape should be the same as the mask_img shape.")
# mask = mask
mask_img[mask == True] = final_index
# print("label", label)
name = label
box = box # .numpy().tolist()
new_annotation = ObjectInfo(instance_id = final_index, mask = mask, class_name = name, x1 = box[0], y1 = box[1], x2 = box[2], y2 = box[3])
anno_2d[final_index] = new_annotation
# np.save(os.path.join(output_dir, output_file_name), mask_img.numpy().astype(np.uint16))
self.mask_height = mask_img.shape[0]
self.mask_width = mask_img.shape[1]
self.labels = anno_2d
def update_masks(self, tracking_annotation_dict, iou_threshold=0.8, objects_count=0):
updated_masks = {}
for seg_obj_id, seg_mask in self.labels.items(): # tracking_masks
flag = 0
new_mask_copy = ObjectInfo()
if seg_mask.mask.sum() == 0:
continue
for object_id, object_info in tracking_annotation_dict.labels.items(): # grounded_sam masks
iou = self.calculate_iou(seg_mask.mask, object_info.mask) # tensor, numpy
# print("iou", iou)
if iou > iou_threshold:
flag = object_info.instance_id
new_mask_copy.mask = seg_mask.mask
new_mask_copy.instance_id = object_info.instance_id
new_mask_copy.class_name = seg_mask.class_name
break
if not flag:
objects_count += 1
flag = objects_count
new_mask_copy.instance_id = objects_count
new_mask_copy.mask = seg_mask.mask
new_mask_copy.class_name = seg_mask.class_name
updated_masks[flag] = new_mask_copy
self.labels = updated_masks
return objects_count
def get_target_class_name(self, instance_id):
return self.labels[instance_id].class_name
def get_target_logit(self, instance_id):
return self.labels[instance_id].logit
@staticmethod
def calculate_iou(mask1, mask2):
# Convert masks to float tensors for calculations
mask1 = mask1.to(torch.float32)
mask2 = mask2.to(torch.float32)
# Calculate intersection and union
intersection = (mask1 * mask2).sum()
union = mask1.sum() + mask2.sum() - intersection
# Calculate IoU
iou = intersection / union
return iou
def save_empty_mask_and_json(self, mask_data_dir, json_data_dir, image_name_list=None):
mask_img = torch.zeros((self.mask_height, self.mask_width))
if image_name_list:
for image_base_name in image_name_list:
image_base_name = image_base_name.split(".")[0]+".npy"
mask_name = "mask_"+image_base_name
np.save(os.path.join(mask_data_dir, mask_name), mask_img.numpy().astype(np.uint16))
json_data_path = os.path.join(json_data_dir, mask_name.replace(".npy", ".json"))
print("save_empty_mask_and_json", json_data_path)
self.to_json(json_data_path)
else:
np.save(os.path.join(mask_data_dir, self.mask_name), mask_img.numpy().astype(np.uint16))
json_data_path = os.path.join(json_data_dir, self.mask_name.replace(".npy", ".json"))
print("save_empty_mask_and_json", json_data_path)
self.to_json(json_data_path)
def to_dict(self):
return {
"mask_name": self.mask_name,
"mask_height": self.mask_height,
"mask_width": self.mask_width,
"promote_type": self.promote_type,
"labels": {k: v.to_dict() for k, v in self.labels.items()}
}
def to_json(self, json_file):
with open(json_file, "w") as f:
json.dump(self.to_dict(), f, indent=4)
def from_json(self, json_file):
with open(json_file, "r") as f:
data = json.load(f)
self.mask_name = data["mask_name"]
self.mask_height = data["mask_height"]
self.mask_width = data["mask_width"]
self.promote_type = data["promote_type"]
self.labels = {int(k): ObjectInfo(**v) for k, v in data["labels"].items()}
return self
@dataclass
class ObjectInfo:
instance_id:int = 0
mask: any = None
class_name:str = ""
x1:int = 0
y1:int = 0
x2:int = 0
y2:int = 0
logit:float = 0.0
def get_mask(self):
return self.mask
def get_id(self):
return self.instance_id
def update_box(self):
# 找到所有非零值的索引
nonzero_indices = torch.nonzero(self.mask)
# 如果没有非零值,返回一个空的边界框
if nonzero_indices.size(0) == 0:
# print("nonzero_indices", nonzero_indices)
return []
# 计算最小和最大索引
y_min, x_min = torch.min(nonzero_indices, dim=0)[0]
y_max, x_max = torch.max(nonzero_indices, dim=0)[0]
# 创建边界框 [x_min, y_min, x_max, y_max]
bbox = [x_min.item(), y_min.item(), x_max.item(), y_max.item()]
self.x1 = bbox[0]
self.y1 = bbox[1]
self.x2 = bbox[2]
self.y2 = bbox[3]
def to_dict(self):
return {
"instance_id": self.instance_id,
"class_name": self.class_name,
"x1": self.x1,
"y1": self.y1,
"x2": self.x2,
"y2": self.y2,
"logit": self.logit
}