Files
Grounded-SAM-2/lib/test/analysis/plot_results.py
2024-11-19 22:12:54 -08:00

797 lines
36 KiB
Python

import tikzplotlib
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
import os.path as osp
import torch
import pickle
import json
from lib.test.evaluation.environment import env_settings
from lib.test.analysis.extract_results import extract_results
def get_plot_draw_styles():
plot_draw_style = [
# {'color': (1.0, 0.0, 0.0), 'line_style': '-'},
# {'color': (0.0, 1.0, 0.0), 'line_style': '-'},
{'color': (0.0, 1.0, 0.0), 'line_style': '-'},
{'color': (0.0, 0.0, 0.0), 'line_style': '-'},
{'color': (1.0, 0.0, 1.0), 'line_style': '-'},
{'color': (0.0, 1.0, 1.0), 'line_style': '-'},
{'color': (0.5, 0.5, 0.5), 'line_style': '-'},
{'color': (136.0 / 255.0, 0.0, 21.0 / 255.0), 'line_style': '-'},
{'color': (1.0, 127.0 / 255.0, 39.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 162.0 / 255.0, 232.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 0.5, 0.0), 'line_style': '-'},
{'color': (1.0, 0.5, 0.2), 'line_style': '-'},
{'color': (0.1, 0.4, 0.0), 'line_style': '-'},
{'color': (0.6, 0.3, 0.9), 'line_style': '-'},
{'color': (0.4, 0.7, 0.1), 'line_style': '-'},
{'color': (0.2, 0.1, 0.7), 'line_style': '-'},
{'color': (0.7, 0.6, 0.2), 'line_style': '-'}]
return plot_draw_style
def check_eval_data_is_valid(eval_data, trackers, dataset):
""" Checks if the pre-computed results are valid"""
seq_names = [s.name for s in dataset]
seq_names_saved = eval_data['sequences']
tracker_names_f = [(t.name, t.parameter_name, t.run_id) for t in trackers]
tracker_names_f_saved = [(t['name'], t['param'], t['run_id']) for t in eval_data['trackers']]
return seq_names == seq_names_saved and tracker_names_f == tracker_names_f_saved
def merge_multiple_runs(eval_data):
new_tracker_names = []
ave_success_rate_plot_overlap_merged = []
ave_success_rate_plot_center_merged = []
ave_success_rate_plot_center_norm_merged = []
avg_overlap_all_merged = []
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all'])
trackers = eval_data['trackers']
merged = torch.zeros(len(trackers), dtype=torch.uint8)
for i in range(len(trackers)):
if merged[i]:
continue
base_tracker = trackers[i]
new_tracker_names.append(base_tracker)
match = [t['name'] == base_tracker['name'] and t['param'] == base_tracker['param'] for t in trackers]
match = torch.tensor(match)
ave_success_rate_plot_overlap_merged.append(ave_success_rate_plot_overlap[:, match, :].mean(1))
ave_success_rate_plot_center_merged.append(ave_success_rate_plot_center[:, match, :].mean(1))
ave_success_rate_plot_center_norm_merged.append(ave_success_rate_plot_center_norm[:, match, :].mean(1))
avg_overlap_all_merged.append(avg_overlap_all[:, match].mean(1))
merged[match] = 1
ave_success_rate_plot_overlap_merged = torch.stack(ave_success_rate_plot_overlap_merged, dim=1)
ave_success_rate_plot_center_merged = torch.stack(ave_success_rate_plot_center_merged, dim=1)
ave_success_rate_plot_center_norm_merged = torch.stack(ave_success_rate_plot_center_norm_merged, dim=1)
avg_overlap_all_merged = torch.stack(avg_overlap_all_merged, dim=1)
eval_data['trackers'] = new_tracker_names
eval_data['ave_success_rate_plot_overlap'] = ave_success_rate_plot_overlap_merged.tolist()
eval_data['ave_success_rate_plot_center'] = ave_success_rate_plot_center_merged.tolist()
eval_data['ave_success_rate_plot_center_norm'] = ave_success_rate_plot_center_norm_merged.tolist()
eval_data['avg_overlap_all'] = avg_overlap_all_merged.tolist()
return eval_data
def get_tracker_display_name(tracker):
if tracker['disp_name'] is None:
if tracker['run_id'] is None:
disp_name = '{}_{}'.format(tracker['name'], tracker['param'])
else:
disp_name = '{}_{}_{:03d}'.format(tracker['name'], tracker['param'],
tracker['run_id'])
else:
disp_name = tracker['disp_name']
return disp_name
def plot_draw_save(y, x, scores, trackers, plot_draw_styles, result_plot_path, plot_opts):
plt.rcParams['text.usetex']=True
plt.rcParams["font.family"] = "Times New Roman"
# Plot settings
font_size = plot_opts.get('font_size', 25)
font_size_axis = plot_opts.get('font_size_axis', 20)
line_width = plot_opts.get('line_width', 2)
font_size_legend = plot_opts.get('font_size_legend', 15)
plot_type = plot_opts['plot_type']
legend_loc = plot_opts['legend_loc']
if 'attr' in plot_opts:
attr = plot_opts['attr']
else:
attr = None
xlabel = plot_opts['xlabel']
ylabel = plot_opts['ylabel']
ylabel = "%s"%(ylabel.replace('%','\%'))
xlim = plot_opts['xlim']
ylim = plot_opts['ylim']
title = r"\textbf{%s}" %(plot_opts['title'])
print
matplotlib.rcParams.update({'font.size': font_size})
matplotlib.rcParams.update({'axes.titlesize': font_size_axis})
matplotlib.rcParams.update({'axes.titleweight': 'black'})
matplotlib.rcParams.update({'axes.labelsize': font_size_axis})
fig, ax = plt.subplots()
index_sort = scores.argsort(descending=False)
plotted_lines = []
legend_text = []
for id, id_sort in enumerate(index_sort):
if trackers[id_sort]['disp_name'].startswith('SAMURAI'):
alpha = 1.0
line_style = '-'
if trackers[id_sort]['disp_name'] == 'SAMURAI-L':
color = (1.0, 0.0, 0.0)
elif trackers[id_sort]['disp_name'] == 'SAMURAI-B':
color = (0.0, 0.0, 1.0)
elif trackers[id_sort]['disp_name'].startswith('SAM2.1'):
alpha = 0.8
line_style = '--'
if trackers[id_sort]['disp_name'] == 'SAM2.1-L':
color = (1.0, 0.0, 0.0)
elif trackers[id_sort]['disp_name'] == 'SAM2.1-B':
color = (0.0, 0.0, 1.0)
else:
alpha = 0.5
color = plot_draw_styles[index_sort.numel() - id - 1]['color']
line_style = ":"
line = ax.plot(x.tolist(), y[id_sort, :].tolist(),
linewidth=line_width,
color=color,
linestyle=line_style,
alpha=alpha)
plotted_lines.append(line[0])
tracker = trackers[id_sort]
disp_name = get_tracker_display_name(tracker)
legend_text.append('{} [{:.1f}]'.format(disp_name, scores[id_sort]))
try:
# add bold to top method
# for i in range(1,2):
# legend_text[-i] = r'\textbf{%s}'%(legend_text[-i])
for id, id_sort in enumerate(index_sort):
if trackers[id_sort]['disp_name'].startswith('SAMTrack'):
legend_text[id] = r'\textbf{%s}'%(legend_text[id])
ax.legend(plotted_lines[::-1], legend_text[::-1], loc=legend_loc, fancybox=False, edgecolor='black',
fontsize=font_size_legend, framealpha=1.0)
except:
pass
ax.set(xlabel=xlabel,
ylabel=ylabel,
xlim=xlim, ylim=ylim,
title=title)
ax.grid(True, linestyle='-.')
fig.tight_layout()
def tikzplotlib_fix_ncols(obj):
"""
workaround for matplotlib 3.6 renamed legend's _ncol to _ncols, which breaks tikzplotlib
"""
if hasattr(obj, "_ncols"):
obj._ncol = obj._ncols
for child in obj.get_children():
tikzplotlib_fix_ncols(child)
tikzplotlib_fix_ncols(fig)
# tikzplotlib.save('{}/{}_plot.tex'.format(result_plot_path, plot_type))
if attr is not None:
fig.savefig('{}/{}_{}_plot.pdf'.format(result_plot_path, plot_type, attr), dpi=300, format='pdf', transparent=True)
else:
fig.savefig('{}/{}_plot.pdf'.format(result_plot_path, plot_type), dpi=300, format='pdf', transparent=True)
plt.draw()
def check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation=False, **kwargs):
# Load data
settings = env_settings()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data_path = os.path.join(result_plot_path, 'eval_data.pkl')
if os.path.isfile(eval_data_path) and not force_evaluation:
with open(eval_data_path, 'rb') as fh:
eval_data = pickle.load(fh)
else:
# print('Pre-computed evaluation data not found. Computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
if not check_eval_data_is_valid(eval_data, trackers, dataset):
# print('Pre-computed evaluation data invalid. Re-computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
# pass
else:
# Update display names
tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
for t in trackers]
eval_data['trackers'] = tracker_names
with open(eval_data_path, 'wb') as fh:
pickle.dump(eval_data, fh)
return eval_data
def get_auc_curve(ave_success_rate_plot_overlap, valid_sequence):
ave_success_rate_plot_overlap = ave_success_rate_plot_overlap[valid_sequence, :, :]
auc_curve = ave_success_rate_plot_overlap.mean(0) * 100.0
auc = auc_curve.mean(-1)
return auc_curve, auc
def get_prec_curve(ave_success_rate_plot_center, valid_sequence):
ave_success_rate_plot_center = ave_success_rate_plot_center[valid_sequence, :, :]
prec_curve = ave_success_rate_plot_center.mean(0) * 100.0
prec_score = prec_curve[:, 20]
return prec_curve, prec_score
def plot_per_attribute_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
attr_folder = 'data/LaSOT/att'
attr_list = ['Illumination Variation', 'Partial Occlusion', 'Deformation', 'Motion Blur', 'Camera Motion', 'Rotation', 'Background Clutter', 'Viewpoint Change', 'Scale Variation', 'Full Occlusion', 'Fast Motion', 'Out-of-View', 'Low Resolution', 'Aspect Ration Change']
attr_list = ['IV', 'POC', 'DEF', 'MB', 'CM', 'ROT', 'BC', 'VC', 'SV', 'FOC', 'FM', 'OV', 'LR', 'ARC']
# Iterate over the sequence and construct a valid_sequence for each attribute
valid_sequence_attr = {}
for attr in attr_list:
valid_sequence_attr[attr] = torch.zeros(valid_sequence.shape[0], dtype=torch.bool)
for seq_id, seq_obj in enumerate(dataset):
seq_name = seq_obj.name
attr_txt = osp.join(attr_folder, f'{seq_name}.txt')
if osp.exists(attr_txt):
# read the attribute file into a list of True and False
# the attribute file looks like this: 0,0,0,0,0,1,0,1,1,0,0,0,0,0
attr_anno = np.loadtxt(attr_txt, dtype=int, delimiter=',')
# broadcast the valid_sequence to the attribute list
for attr_id, attr in enumerate(attr_list):
valid_sequence_attr[attr][seq_id] = attr_anno[attr_id]
else:
raise Exception(f'Attribute file not found for sequence {seq_name}')
tracker_names = eval_data['trackers']
if report_name == 'LaSOT-ext':
ylim_success = (0, 95)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
report_name = "LaSOT_{ext}"
else:
ylim_success = (0, 95)
ylim_precision = (0, 100)
ylim_norm_precision = (0, 88)
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
for attr in attr_list:
scores = {}
print(f'{attr}: {valid_sequence_attr[attr].sum().item()}')
valid_sequence_attr[attr] = valid_sequence_attr[attr] & valid_sequence
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence_attr[attr])
scores['AUC'] = auc
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence_attr[attr])
scores['Precision'] = prec_score
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence_attr[attr])
scores['Norm Precision'] = norm_prec_score
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=attr)
print(report_text)
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold', 'attr': attr,
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': ylim_success, 'title': f'Success\ of\ {attr}\ ({report_name})'}
plot_draw_save(auc_curve, threshold_set_overlap, auc, tracker_names, plot_draw_styles, result_plot_path, success_plot_opts)
def plot_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), force_evaluation=False, **kwargs):
"""
Plot results for the given trackers
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success',
'prec' (precision), and 'norm_prec' (normalized precision)
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nPlotting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
print('\nGenerating plots for: {}'.format(report_name))
print(report_name)
if report_name == 'LaSOT':
ylim_success = (0, 95)
ylim_precision = (0, 95)
ylim_norm_precision = (0, 95)
elif report_name == 'LaSOT-ext':
ylim_success = (0, 85)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
else:
ylim_success = (0, 85)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
# ******************************** Success Plot **************************************
if 'success' in plot_types:
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': ylim_success, 'title': f'Success\ ({report_name})'}
plot_draw_save(auc_curve, threshold_set_overlap, auc, tracker_names, plot_draw_styles, result_plot_path, success_plot_opts)
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
threshold_set_center = torch.tensor(eval_data['threshold_set_center'])
precision_plot_opts = {'plot_type': 'precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold [pixels]', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 50), 'ylim': ylim_precision, 'title': f'Precision\ ({report_name})'}
plot_draw_save(prec_curve, threshold_set_center, prec_score, tracker_names, plot_draw_styles, result_plot_path,
precision_plot_opts)
# ******************************** Norm Precision Plot **************************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
threshold_set_center_norm = torch.tensor(eval_data['threshold_set_center_norm'])
norm_precision_plot_opts = {'plot_type': 'norm_precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 0.5), 'ylim': ylim_norm_precision, 'title': f'Normalized\ Precision\ ({report_name})'}
plot_draw_save(prec_curve, threshold_set_center_norm, prec_score, tracker_names, plot_draw_styles, result_plot_path,
norm_precision_plot_opts)
plt.show()
def generate_formatted_report(row_labels, scores, table_name=''):
name_width = max([len(d) for d in row_labels] + [len(table_name)]) + 5
min_score_width = 10
report_text = '\n{label: <{width}} |'.format(label=table_name, width=name_width)
score_widths = [max(min_score_width, len(k) + 3) for k in scores.keys()]
for s, s_w in zip(scores.keys(), score_widths):
report_text = '{prev} {s: <{width}} |'.format(prev=report_text, s=s, width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
for trk_id, d_name in enumerate(row_labels):
# display name
report_text = '{prev}{tracker: <{width}} |'.format(prev=report_text, tracker=d_name,
width=name_width)
for (score_type, score_value), s_w in zip(scores.items(), score_widths):
report_text = '{prev} {score: <{width}} |'.format(prev=report_text,
score='{:0.2f}'.format(score_value[trk_id].item()),
width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
return report_text
def print_per_attribute_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
attr_folder = 'data/LaSOT/att'
attr_list = ['Illumination Variation', 'Partial Occlusion', 'Deformation', 'Motion Blur', 'Camera Motion', 'Rotation', 'Background Clutter', 'Viewpoint Change', 'Scale Variation', 'Full Occlusion', 'Fast Motion', 'Out-of-View', 'Low Resolution', 'Aspect Ration Change']
attr_list = ['IV', 'POC', 'DEF', 'MB', 'CM', 'ROT', 'BC', 'VC', 'SV', 'FOC', 'FM', 'OV', 'LR', 'ARC']
# Iterate over the sequence and construct a valid_sequence for each attribute
valid_sequence_attr = {}
for attr in attr_list:
valid_sequence_attr[attr] = torch.zeros(valid_sequence.shape[0], dtype=torch.bool)
for seq_id, seq_obj in enumerate(dataset):
seq_name = seq_obj.name
attr_txt = osp.join(attr_folder, f'{seq_name}.txt')
if osp.exists(attr_txt):
# read the attribute file into a list of True and False
# the attribute file looks like this: 0,0,0,0,0,1,0,1,1,0,0,0,0,0
attr_anno = np.loadtxt(attr_txt, dtype=int, delimiter=',')
# broadcast the valid_sequence to the attribute list
for attr_id, attr in enumerate(attr_list):
valid_sequence_attr[attr][seq_id] = attr_anno[attr_id]
else:
raise Exception(f'Attribute file not found for sequence {seq_name}')
tracker_names = eval_data['trackers']
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
for attr in attr_list:
scores = {}
print(f'{attr}: {valid_sequence_attr[attr].sum().item()}')
valid_sequence_attr[attr] = valid_sequence_attr[attr] & valid_sequence
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence_attr[attr])
scores['AUC'] = auc
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence_attr[attr])
scores['Precision'] = prec_score
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence_attr[attr])
scores['Norm Precision'] = norm_prec_score
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=attr)
print(report_text)
def print_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
""" Print the results for the given trackers in a formatted table
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success' (prints AUC, OP50, and OP75 scores),
'prec' (prints precision score), and 'norm_prec' (prints normalized precision score)
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nReporting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
scores = {}
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)
def plot_got_success(trackers, report_name):
""" Plot success plot for GOT-10k dataset using the json reports.
Save the json reports from http://got-10k.aitestunion.com/leaderboard in the directory set to
env_settings.got_reports_path
The tracker name in the experiment file should be set to the name of the report file for that tracker,
e.g. DiMP50_report_2019_09_02_15_44_25 if the report is name DiMP50_report_2019_09_02_15_44_25.json
args:
trackers - List of trackers to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
result_plot_path = os.path.join(settings.result_plot_path, report_name)
auc_curve = torch.zeros((len(trackers), 101))
scores = torch.zeros(len(trackers))
# Load results
tracker_names = []
for trk_id, trk in enumerate(trackers):
json_path = '{}/{}.json'.format(settings.got_reports_path, trk.name)
if os.path.isfile(json_path):
with open(json_path, 'r') as f:
eval_data = json.load(f)
else:
raise Exception('Report not found {}'.format(json_path))
if len(eval_data.keys()) > 1:
raise Exception
# First field is the tracker name. Index it out
eval_data = eval_data[list(eval_data.keys())[0]]
if 'succ_curve' in eval_data.keys():
curve = eval_data['succ_curve']
ao = eval_data['ao']
elif 'overall' in eval_data.keys() and 'succ_curve' in eval_data['overall'].keys():
curve = eval_data['overall']['succ_curve']
ao = eval_data['overall']['ao']
else:
raise Exception('Invalid JSON file {}'.format(json_path))
auc_curve[trk_id, :] = torch.tensor(curve) * 100.0
scores[trk_id] = ao * 100.0
tracker_names.append({'name': trk.name, 'param': trk.parameter_name, 'run_id': trk.run_id,
'disp_name': trk.display_name})
threshold_set_overlap = torch.arange(0.0, 1.01, 0.01, dtype=torch.float64)
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': (0, 100), 'title': 'Success plot'}
plot_draw_save(auc_curve, threshold_set_overlap, scores, tracker_names, plot_draw_styles, result_plot_path,
success_plot_opts)
plt.show()
def print_per_sequence_results(trackers, dataset, report_name, merge_results=False,
filter_criteria=None, **kwargs):
""" Print per-sequence results for the given trackers. Additionally, the sequences to list can be filtered using
the filter criteria.
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
filter_criteria - Filter sequence results which are reported. Following modes are supported
None: No filtering. Display results for all sequences in dataset
'ao_min': Only display sequences for which the minimum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences where at least one tracker performs poorly.
'ao_max': Only display sequences for which the maximum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences all tracker performs poorly.
'delta_ao': Only display sequences for which the performance of different trackers vary by at
least filter_criteria['threshold'] in average overlap (AO) score. This mode can
be used to select sequences where the behaviour of the trackers greatly differ
between each other.
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
sequence_names = eval_data['sequences']
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all']) * 100.0
# Filter sequences
if filter_criteria is not None:
if filter_criteria['mode'] == 'ao_min':
min_ao = avg_overlap_all.min(dim=1)[0]
valid_sequence = valid_sequence & (min_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'ao_max':
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & (max_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'delta_ao':
min_ao = avg_overlap_all.min(dim=1)[0]
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & ((max_ao - min_ao) > filter_criteria['threshold'])
else:
raise Exception
avg_overlap_all = avg_overlap_all[valid_sequence, :]
sequence_names = [s + ' (ID={})'.format(i) for i, (s, v) in enumerate(zip(sequence_names, valid_sequence.tolist())) if v]
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
scores_per_tracker = {k: avg_overlap_all[:, i] for i, k in enumerate(tracker_disp_names)}
report_text = generate_formatted_report(sequence_names, scores_per_tracker)
print(report_text)
def print_results_per_video(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), per_video=False, **kwargs):
""" Print the results for the given trackers in a formatted table
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success' (prints AUC, OP50, and OP75 scores),
'prec' (prints precision score), and 'norm_prec' (prints normalized precision score)
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
seq_lens = len(eval_data['sequences'])
eval_datas = [{} for _ in range(seq_lens)]
if per_video:
for key, value in eval_data.items():
if len(value) == seq_lens:
for i in range(seq_lens):
eval_datas[i][key] = [value[i]]
else:
for i in range(seq_lens):
eval_datas[i][key] = value
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nReporting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
scores = {}
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)
if per_video:
for i in range(seq_lens):
eval_data = eval_datas[i]
print('\n{} sequences'.format(eval_data['sequences'][0]))
scores = {}
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)