110 lines
3.3 KiB
Python
110 lines
3.3 KiB
Python
import cv2
|
|
import torch
|
|
import numpy as np
|
|
import supervision as sv
|
|
from torchvision.ops import box_convert
|
|
from sam2.build_sam import build_sam2
|
|
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
from grounding_dino.groundingdino.util.inference import load_model, load_image, predict
|
|
|
|
# environment settings
|
|
# use bfloat16
|
|
|
|
# build SAM2 image predictor
|
|
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
|
model_cfg = "sam2_hiera_l.yaml"
|
|
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
|
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
|
|
|
# build grounding dino model
|
|
model_id = "IDEA-Research/grounding-dino-tiny"
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
grounding_model = load_model(
|
|
model_config_path="grounding_dino/groundingdino/config/GroundingDINO_SwinT_OGC.py",
|
|
model_checkpoint_path="gdino_checkpoints/groundingdino_swint_ogc.pth",
|
|
device=device
|
|
)
|
|
|
|
|
|
# setup the input image and text prompt for SAM 2 and Grounding DINO
|
|
# VERY important: text queries need to be lowercased + end with a dot
|
|
text = "car. tire."
|
|
img_path = 'notebooks/images/truck.jpg'
|
|
|
|
image_source, image = load_image(img_path)
|
|
|
|
sam2_predictor.set_image(image_source)
|
|
|
|
boxes, confidences, labels = predict(
|
|
model=grounding_model,
|
|
image=image,
|
|
caption=text,
|
|
box_threshold=0.35,
|
|
text_threshold=0.25
|
|
)
|
|
|
|
# process the box prompt for SAM 2
|
|
h, w, _ = image_source.shape
|
|
boxes = boxes * torch.Tensor([w, h, w, h])
|
|
input_boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
|
|
|
|
|
# FIXME: figure how does this influence the G-DINO model
|
|
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
|
|
|
if torch.cuda.get_device_properties(0).major >= 8:
|
|
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
masks, scores, logits = sam2_predictor.predict(
|
|
point_coords=None,
|
|
point_labels=None,
|
|
box=input_boxes,
|
|
multimask_output=False,
|
|
)
|
|
|
|
"""
|
|
Post-process the output of the model to get the masks, scores, and logits for visualization
|
|
"""
|
|
# convert the shape to (n, H, W)
|
|
if masks.ndim == 3:
|
|
masks = masks[None]
|
|
scores = scores[None]
|
|
logits = logits[None]
|
|
elif masks.ndim == 4:
|
|
masks = masks.squeeze(1)
|
|
|
|
|
|
confidences = confidences.numpy().tolist()
|
|
class_names = labels
|
|
|
|
class_ids = np.array(list(range(len(class_names))))
|
|
|
|
labels = [
|
|
f"{class_name} {confidence:.2f}"
|
|
for class_name, confidence
|
|
in zip(class_names, confidences)
|
|
]
|
|
|
|
"""
|
|
Visualize image with supervision useful API
|
|
"""
|
|
img = cv2.imread(img_path)
|
|
detections = sv.Detections(
|
|
xyxy=input_boxes, # (n, 4)
|
|
mask=masks.astype(bool), # (n, h, w)
|
|
class_id=class_ids
|
|
)
|
|
|
|
box_annotator = sv.BoxAnnotator()
|
|
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
|
|
|
|
label_annotator = sv.LabelAnnotator()
|
|
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
|
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
|
|
|
|
mask_annotator = sv.MaskAnnotator()
|
|
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
|
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
|