176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the sav_dataset directory of this source tree.
|
|
import json
|
|
import os
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pycocotools.mask as mask_util
|
|
|
|
|
|
def decode_video(video_path: str) -> List[np.ndarray]:
|
|
"""
|
|
Decode the video and return the RGB frames
|
|
"""
|
|
video = cv2.VideoCapture(video_path)
|
|
video_frames = []
|
|
while video.isOpened():
|
|
ret, frame = video.read()
|
|
if ret:
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
video_frames.append(frame)
|
|
else:
|
|
break
|
|
return video_frames
|
|
|
|
|
|
def show_anns(masks, colors: List, borders=True) -> None:
|
|
"""
|
|
show the annotations
|
|
"""
|
|
# return if no masks
|
|
if len(masks) == 0:
|
|
return
|
|
|
|
# sort masks by size
|
|
sorted_annot_and_color = sorted(
|
|
zip(masks, colors), key=(lambda x: x[0].sum()), reverse=True
|
|
)
|
|
H, W = sorted_annot_and_color[0][0].shape[0], sorted_annot_and_color[0][0].shape[1]
|
|
|
|
canvas = np.ones((H, W, 4))
|
|
canvas[:, :, 3] = 0 # set the alpha channel
|
|
contour_thickness = max(1, int(min(5, 0.01 * min(H, W))))
|
|
for mask, color in sorted_annot_and_color:
|
|
canvas[mask] = np.concatenate([color, [0.55]])
|
|
if borders:
|
|
contours, _ = cv2.findContours(
|
|
np.array(mask, dtype=np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE
|
|
)
|
|
cv2.drawContours(
|
|
canvas, contours, -1, (0.05, 0.05, 0.05, 1), thickness=contour_thickness
|
|
)
|
|
|
|
ax = plt.gca()
|
|
ax.imshow(canvas)
|
|
|
|
|
|
class SAVDataset:
|
|
"""
|
|
SAVDataset is a class to load the SAV dataset and visualize the annotations.
|
|
"""
|
|
|
|
def __init__(self, sav_dir, annot_sample_rate=4):
|
|
"""
|
|
Args:
|
|
sav_dir: the directory of the SAV dataset
|
|
annot_sample_rate: the sampling rate of the annotations.
|
|
The annotations are aligned with the videos at 6 fps.
|
|
"""
|
|
self.sav_dir = sav_dir
|
|
self.annot_sample_rate = annot_sample_rate
|
|
self.manual_mask_colors = np.random.random((256, 3))
|
|
self.auto_mask_colors = np.random.random((256, 3))
|
|
|
|
def read_frames(self, mp4_path: str) -> None:
|
|
"""
|
|
Read the frames and downsample them to align with the annotations.
|
|
"""
|
|
if not os.path.exists(mp4_path):
|
|
print(f"{mp4_path} doesn't exist.")
|
|
return None
|
|
else:
|
|
# decode the video
|
|
frames = decode_video(mp4_path)
|
|
print(f"There are {len(frames)} frames decoded from {mp4_path} (24fps).")
|
|
|
|
# downsample the frames to align with the annotations
|
|
frames = frames[:: self.annot_sample_rate]
|
|
print(
|
|
f"Videos are annotated every {self.annot_sample_rate} frames. "
|
|
"To align with the annotations, "
|
|
f"downsample the video to {len(frames)} frames."
|
|
)
|
|
return frames
|
|
|
|
def get_frames_and_annotations(
|
|
self, video_id: str
|
|
) -> Tuple[List | None, Dict | None, Dict | None]:
|
|
"""
|
|
Get the frames and annotations for video.
|
|
"""
|
|
# load the video
|
|
mp4_path = os.path.join(self.sav_dir, video_id + ".mp4")
|
|
frames = self.read_frames(mp4_path)
|
|
if frames is None:
|
|
return None, None, None
|
|
|
|
# load the manual annotations
|
|
manual_annot_path = os.path.join(self.sav_dir, video_id + "_manual.json")
|
|
if not os.path.exists(manual_annot_path):
|
|
print(f"{manual_annot_path} doesn't exist. Something might be wrong.")
|
|
manual_annot = None
|
|
else:
|
|
manual_annot = json.load(open(manual_annot_path))
|
|
|
|
# load the manual annotations
|
|
auto_annot_path = os.path.join(self.sav_dir, video_id + "_auto.json")
|
|
if not os.path.exists(auto_annot_path):
|
|
print(f"{auto_annot_path} doesn't exist.")
|
|
auto_annot = None
|
|
else:
|
|
auto_annot = json.load(open(auto_annot_path))
|
|
|
|
return frames, manual_annot, auto_annot
|
|
|
|
def visualize_annotation(
|
|
self,
|
|
frames: List[np.ndarray],
|
|
auto_annot: Optional[Dict],
|
|
manual_annot: Optional[Dict],
|
|
annotated_frame_id: int,
|
|
show_auto=True,
|
|
show_manual=True,
|
|
) -> None:
|
|
"""
|
|
Visualize the annotations on the annotated_frame_id.
|
|
If show_manual is True, show the manual annotations.
|
|
If show_auto is True, show the auto annotations.
|
|
By default, show both auto and manual annotations.
|
|
"""
|
|
|
|
if annotated_frame_id >= len(frames):
|
|
print("invalid annotated_frame_id")
|
|
return
|
|
|
|
rles = []
|
|
colors = []
|
|
if show_manual and manual_annot is not None:
|
|
rles.extend(manual_annot["masklet"][annotated_frame_id])
|
|
colors.extend(
|
|
self.manual_mask_colors[
|
|
: len(manual_annot["masklet"][annotated_frame_id])
|
|
]
|
|
)
|
|
if show_auto and auto_annot is not None:
|
|
rles.extend(auto_annot["masklet"][annotated_frame_id])
|
|
colors.extend(
|
|
self.auto_mask_colors[: len(auto_annot["masklet"][annotated_frame_id])]
|
|
)
|
|
|
|
plt.imshow(frames[annotated_frame_id])
|
|
|
|
if len(rles) > 0:
|
|
masks = [mask_util.decode(rle) > 0 for rle in rles]
|
|
show_anns(masks, colors)
|
|
else:
|
|
print("No annotation will be shown")
|
|
|
|
plt.axis("off")
|
|
plt.show()
|