
This PR provides new features and updates for SAM 2: - We now support `torch.compile` of the entire SAM 2 model on videos, which can be turned on by setting `vos_optimized=True` in `build_sam2_video_predictor` (it uses the new `SAM2VideoPredictorVOS` predictor class in `sam2/sam2_video_predictor.py`). * Compared to the previous setting (which only compiles the image encoder backbone), the new full model compilation gives a major speedup in inference FPS. * In the VOS prediction script `tools/vos_inference.py`, you can specify this option in `tools/vos_inference.py` via the `--use_vos_optimized_video_predictor` flag. * Note that turning on this flag might introduce a small variance in the predictions due to numerical differences caused by `torch.compile` of the full model. * **PyTorch 2.5.1 is the minimum version for full support of this feature**. (Earlier PyTorch versions might run into compilation errors in some cases.) Therefore, we have updated the minimum PyTorch version to 2.5.1 accordingly in the installation scripts. - We also update the implementation of the `SAM2VideoPredictor` class for the SAM 2 video prediction in `sam2/sam2_video_predictor.py`, which allows for independent per-object inference. Specifically, in the new `SAM2VideoPredictor`: * Now **we handle the inference of each object independently** (as if we are opening a separate session for each object) while sharing their backbone features. * This change allows us to relax the assumption of prompting for multi-object tracking. Previously (due to the batching behavior in inference), if a video frame receives clicks for only a subset of objects, the rest of the (non-prompted) objects are assumed to be non-existent in this frame (i.e., in such frames, the user is telling SAM 2 that the rest of the objects don't appear). Now, if a frame receives clicks for only a subset of objects, we do not make any assumptions about the remaining (non-prompted) objects (i.e., now each object is handled independently and is not affected by how other objects are prompted). As a result, **we allow adding new objects after tracking starts** after this change (which was previously a restriction on usage). * We believe that the new version is a more natural inference behavior and therefore switched to it as the default behavior. The previous implementation of `SAM2VideoPredictor` is backed up to in `sam2/sam2_video_predictor_legacy.py`. All the VOS inference results using `tools/vos_inference.py` should remain the same after this change to the `SAM2VideoPredictor` class.
1223 lines
58 KiB
Python
1223 lines
58 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import warnings
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tqdm import tqdm
|
|
|
|
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
|
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
|
|
|
|
|
class SAM2VideoPredictor(SAM2Base):
|
|
"""The predictor class to handle user interactions and manage inference states."""
|
|
|
|
def __init__(
|
|
self,
|
|
fill_hole_area=0,
|
|
# whether to apply non-overlapping constraints on the output object masks
|
|
non_overlap_masks=False,
|
|
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
|
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
|
clear_non_cond_mem_around_input=False,
|
|
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
|
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
|
add_all_frames_to_correct_as_cond=False,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.fill_hole_area = fill_hole_area
|
|
self.non_overlap_masks = non_overlap_masks
|
|
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
|
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
|
|
|
@torch.inference_mode()
|
|
def init_state(
|
|
self,
|
|
video_path,
|
|
offload_video_to_cpu=False,
|
|
offload_state_to_cpu=False,
|
|
async_loading_frames=False,
|
|
):
|
|
"""Initialize an inference state."""
|
|
compute_device = self.device # device of the model
|
|
images, video_height, video_width = load_video_frames(
|
|
video_path=video_path,
|
|
image_size=self.image_size,
|
|
offload_video_to_cpu=offload_video_to_cpu,
|
|
async_loading_frames=async_loading_frames,
|
|
compute_device=compute_device,
|
|
)
|
|
inference_state = {}
|
|
inference_state["images"] = images
|
|
inference_state["num_frames"] = len(images)
|
|
# whether to offload the video frames to CPU memory
|
|
# turning on this option saves the GPU memory with only a very small overhead
|
|
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
|
# whether to offload the inference state to CPU memory
|
|
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
|
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
|
# and from 24 to 21 when tracking two objects)
|
|
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
|
# the original video height and width, used for resizing final output scores
|
|
inference_state["video_height"] = video_height
|
|
inference_state["video_width"] = video_width
|
|
inference_state["device"] = compute_device
|
|
if offload_state_to_cpu:
|
|
inference_state["storage_device"] = torch.device("cpu")
|
|
else:
|
|
inference_state["storage_device"] = compute_device
|
|
# inputs on each frame
|
|
inference_state["point_inputs_per_obj"] = {}
|
|
inference_state["mask_inputs_per_obj"] = {}
|
|
# visual features on a small number of recently visited frames for quick interactions
|
|
inference_state["cached_features"] = {}
|
|
# values that don't change across frames (so we only need to hold one copy of them)
|
|
inference_state["constants"] = {}
|
|
# mapping between client-side object id and model-side object index
|
|
inference_state["obj_id_to_idx"] = OrderedDict()
|
|
inference_state["obj_idx_to_id"] = OrderedDict()
|
|
inference_state["obj_ids"] = []
|
|
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
|
inference_state["output_dict_per_obj"] = {}
|
|
# A temporary storage to hold new outputs when user interact with a frame
|
|
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
|
inference_state["temp_output_dict_per_obj"] = {}
|
|
# Frames that already holds consolidated outputs from click or mask inputs
|
|
# (we directly use their consolidated outputs during tracking)
|
|
# metadata for each tracking frame (e.g. which direction it's tracked)
|
|
inference_state["frames_tracked_per_obj"] = {}
|
|
# Warm up the visual backbone and cache the image feature on frame 0
|
|
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
|
return inference_state
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
|
|
"""
|
|
Load a pretrained model from the Hugging Face hub.
|
|
|
|
Arguments:
|
|
model_id (str): The Hugging Face repository ID.
|
|
**kwargs: Additional arguments to pass to the model constructor.
|
|
|
|
Returns:
|
|
(SAM2VideoPredictor): The loaded model.
|
|
"""
|
|
from sam2.build_sam import build_sam2_video_predictor_hf
|
|
|
|
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
|
|
return sam_model
|
|
|
|
def _obj_id_to_idx(self, inference_state, obj_id):
|
|
"""Map client-side object id to model-side object index."""
|
|
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
if obj_idx is not None:
|
|
return obj_idx
|
|
|
|
# We always allow adding new objects (including after tracking starts).
|
|
allow_new_object = True
|
|
if allow_new_object:
|
|
# get the next object slot
|
|
obj_idx = len(inference_state["obj_id_to_idx"])
|
|
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
|
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
|
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
|
# set up input and output structures for this object
|
|
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
|
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
|
inference_state["output_dict_per_obj"][obj_idx] = {
|
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
}
|
|
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
|
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
|
}
|
|
inference_state["frames_tracked_per_obj"][obj_idx] = {}
|
|
return obj_idx
|
|
else:
|
|
raise RuntimeError(
|
|
f"Cannot add new object id {obj_id} after tracking starts. "
|
|
f"All existing object ids: {inference_state['obj_ids']}. "
|
|
f"Please call 'reset_state' to restart from scratch."
|
|
)
|
|
|
|
def _obj_idx_to_id(self, inference_state, obj_idx):
|
|
"""Map model-side object index to client-side object id."""
|
|
return inference_state["obj_idx_to_id"][obj_idx]
|
|
|
|
def _get_obj_num(self, inference_state):
|
|
"""Get the total number of unique object ids received so far in this session."""
|
|
return len(inference_state["obj_idx_to_id"])
|
|
|
|
@torch.inference_mode()
|
|
def add_new_points_or_box(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
obj_id,
|
|
points=None,
|
|
labels=None,
|
|
clear_old_points=True,
|
|
normalize_coords=True,
|
|
box=None,
|
|
):
|
|
"""Add new points to a frame."""
|
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
|
|
|
if (points is not None) != (labels is not None):
|
|
raise ValueError("points and labels must be provided together")
|
|
if points is None and box is None:
|
|
raise ValueError("at least one of points or box must be provided as input")
|
|
|
|
if points is None:
|
|
points = torch.zeros(0, 2, dtype=torch.float32)
|
|
elif not isinstance(points, torch.Tensor):
|
|
points = torch.tensor(points, dtype=torch.float32)
|
|
if labels is None:
|
|
labels = torch.zeros(0, dtype=torch.int32)
|
|
elif not isinstance(labels, torch.Tensor):
|
|
labels = torch.tensor(labels, dtype=torch.int32)
|
|
if points.dim() == 2:
|
|
points = points.unsqueeze(0) # add batch dimension
|
|
if labels.dim() == 1:
|
|
labels = labels.unsqueeze(0) # add batch dimension
|
|
|
|
# If `box` is provided, we add it as the first two points with labels 2 and 3
|
|
# along with the user-provided points (consistent with how SAM 2 is trained).
|
|
if box is not None:
|
|
if not clear_old_points:
|
|
raise ValueError(
|
|
"cannot add box without clearing old points, since "
|
|
"box prompt must be provided before any point prompt "
|
|
"(please use clear_old_points=True instead)"
|
|
)
|
|
if not isinstance(box, torch.Tensor):
|
|
box = torch.tensor(box, dtype=torch.float32, device=points.device)
|
|
box_coords = box.reshape(1, 2, 2)
|
|
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
|
|
box_labels = box_labels.reshape(1, 2)
|
|
points = torch.cat([box_coords, points], dim=1)
|
|
labels = torch.cat([box_labels, labels], dim=1)
|
|
|
|
if normalize_coords:
|
|
video_H = inference_state["video_height"]
|
|
video_W = inference_state["video_width"]
|
|
points = points / torch.tensor([video_W, video_H]).to(points.device)
|
|
# scale the (normalized) coordinates by the model's internal image size
|
|
points = points * self.image_size
|
|
points = points.to(inference_state["device"])
|
|
labels = labels.to(inference_state["device"])
|
|
|
|
if not clear_old_points:
|
|
point_inputs = point_inputs_per_frame.get(frame_idx, None)
|
|
else:
|
|
point_inputs = None
|
|
point_inputs = concat_points(point_inputs, points, labels)
|
|
|
|
point_inputs_per_frame[frame_idx] = point_inputs
|
|
mask_inputs_per_frame.pop(frame_idx, None)
|
|
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
# the input points will be used to correct the already tracked masks.
|
|
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
|
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
|
# whether to track in reverse time order
|
|
if is_init_cond_frame:
|
|
reverse = False
|
|
else:
|
|
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
|
|
# Get any previously predicted mask logits on this object and feed it along with
|
|
# the new clicks into the SAM mask decoder.
|
|
prev_sam_mask_logits = None
|
|
# lookup temporary output dict first, which contains the most recent output
|
|
# (if not found, then lookup conditioning and non-conditioning frame output)
|
|
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
|
if prev_out is None:
|
|
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
|
if prev_out is None:
|
|
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
|
|
|
if prev_out is not None and prev_out["pred_masks"] is not None:
|
|
device = inference_state["device"]
|
|
prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
|
|
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
|
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
|
current_out, _ = self._run_single_frame_inference(
|
|
inference_state=inference_state,
|
|
output_dict=obj_output_dict, # run on the slice of a single object
|
|
frame_idx=frame_idx,
|
|
batch_size=1, # run on the slice of a single object
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
point_inputs=point_inputs,
|
|
mask_inputs=None,
|
|
reverse=reverse,
|
|
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
|
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
|
# allows us to enforce non-overlapping constraints on all objects before encoding
|
|
# them into memory.
|
|
run_mem_encoder=False,
|
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
)
|
|
# Add the output to the output dict (to be used as future memory)
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
|
|
# Resize the output mask to the original video resolution
|
|
obj_ids = inference_state["obj_ids"]
|
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond=is_cond,
|
|
consolidate_at_video_res=True,
|
|
)
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, consolidated_out["pred_masks_video_res"]
|
|
)
|
|
return frame_idx, obj_ids, video_res_masks
|
|
|
|
def add_new_points(self, *args, **kwargs):
|
|
"""Deprecated method. Please use `add_new_points_or_box` instead."""
|
|
return self.add_new_points_or_box(*args, **kwargs)
|
|
|
|
@torch.inference_mode()
|
|
def add_new_mask(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
obj_id,
|
|
mask,
|
|
):
|
|
"""Add new mask to a frame."""
|
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
|
|
|
if not isinstance(mask, torch.Tensor):
|
|
mask = torch.tensor(mask, dtype=torch.bool)
|
|
assert mask.dim() == 2
|
|
mask_H, mask_W = mask.shape
|
|
mask_inputs_orig = mask[None, None] # add batch and channel dimension
|
|
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
|
|
|
|
# resize the mask if it doesn't match the model's image size
|
|
if mask_H != self.image_size or mask_W != self.image_size:
|
|
mask_inputs = torch.nn.functional.interpolate(
|
|
mask_inputs_orig,
|
|
size=(self.image_size, self.image_size),
|
|
align_corners=False,
|
|
mode="bilinear",
|
|
antialias=True, # use antialias for downsampling
|
|
)
|
|
mask_inputs = (mask_inputs >= 0.5).float()
|
|
else:
|
|
mask_inputs = mask_inputs_orig
|
|
|
|
mask_inputs_per_frame[frame_idx] = mask_inputs
|
|
point_inputs_per_frame.pop(frame_idx, None)
|
|
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
|
# frame, meaning that the inputs points are to generate segments on this frame without
|
|
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
|
# the input points will be used to correct the already tracked masks.
|
|
obj_frames_tracked = inference_state["frames_tracked_per_obj"][obj_idx]
|
|
is_init_cond_frame = frame_idx not in obj_frames_tracked
|
|
# whether to track in reverse time order
|
|
if is_init_cond_frame:
|
|
reverse = False
|
|
else:
|
|
reverse = obj_frames_tracked[frame_idx]["reverse"]
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
# Add a frame to conditioning output if it's an initial conditioning frame or
|
|
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
|
|
current_out, _ = self._run_single_frame_inference(
|
|
inference_state=inference_state,
|
|
output_dict=obj_output_dict, # run on the slice of a single object
|
|
frame_idx=frame_idx,
|
|
batch_size=1, # run on the slice of a single object
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
point_inputs=None,
|
|
mask_inputs=mask_inputs,
|
|
reverse=reverse,
|
|
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
|
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
|
# allows us to enforce non-overlapping constraints on all objects before encoding
|
|
# them into memory.
|
|
run_mem_encoder=False,
|
|
)
|
|
# Add the output to the output dict (to be used as future memory)
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
|
|
|
# Resize the output mask to the original video resolution
|
|
obj_ids = inference_state["obj_ids"]
|
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond=is_cond,
|
|
consolidate_at_video_res=True,
|
|
)
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, consolidated_out["pred_masks_video_res"]
|
|
)
|
|
return frame_idx, obj_ids, video_res_masks
|
|
|
|
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
|
"""
|
|
Resize the object scores to the original video resolution (video_res_masks)
|
|
and apply non-overlapping constraints for final output.
|
|
"""
|
|
device = inference_state["device"]
|
|
video_H = inference_state["video_height"]
|
|
video_W = inference_state["video_width"]
|
|
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
|
if any_res_masks.shape[-2:] == (video_H, video_W):
|
|
video_res_masks = any_res_masks
|
|
else:
|
|
video_res_masks = torch.nn.functional.interpolate(
|
|
any_res_masks,
|
|
size=(video_H, video_W),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
if self.non_overlap_masks:
|
|
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
|
return any_res_masks, video_res_masks
|
|
|
|
def _consolidate_temp_output_across_obj(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond,
|
|
consolidate_at_video_res=False,
|
|
):
|
|
"""
|
|
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
|
a frame into a single output for all objects, including
|
|
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
|
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
|
(if they don't exist in `output_dict_per_obj` for this frame);
|
|
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
|
on the object scores.
|
|
"""
|
|
batch_size = self._get_obj_num(inference_state)
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
# Optionally, we allow consolidating the temporary outputs at the original
|
|
# video resolution (to provide a better editing experience for mask prompts).
|
|
if consolidate_at_video_res:
|
|
consolidated_H = inference_state["video_height"]
|
|
consolidated_W = inference_state["video_width"]
|
|
consolidated_mask_key = "pred_masks_video_res"
|
|
else:
|
|
consolidated_H = consolidated_W = self.image_size // 4
|
|
consolidated_mask_key = "pred_masks"
|
|
|
|
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
|
# will be added when rerunning the memory encoder after applying non-overlapping
|
|
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
|
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
|
consolidated_out = {
|
|
consolidated_mask_key: torch.full(
|
|
size=(batch_size, 1, consolidated_H, consolidated_W),
|
|
fill_value=NO_OBJ_SCORE,
|
|
dtype=torch.float32,
|
|
device=inference_state["storage_device"],
|
|
),
|
|
}
|
|
for obj_idx in range(batch_size):
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
|
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
|
# we fall back and look up its previous output in "output_dict_per_obj".
|
|
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
|
# "output_dict_per_obj" to find a previous output for this object.
|
|
if out is None:
|
|
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
|
if out is None:
|
|
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
|
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
|
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
|
# placeholder above) and set its object pointer to be a dummy pointer.
|
|
if out is None:
|
|
continue
|
|
# Add the temporary object output mask to consolidated output mask
|
|
obj_mask = out["pred_masks"]
|
|
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
|
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
|
else:
|
|
# Resize first if temporary object mask has a different resolution
|
|
resized_obj_mask = torch.nn.functional.interpolate(
|
|
obj_mask,
|
|
size=consolidated_pred_masks.shape[-2:],
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
|
|
|
return consolidated_out
|
|
|
|
@torch.inference_mode()
|
|
def propagate_in_video_preflight(self, inference_state):
|
|
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
|
# Check and make sure that every object has received input points or masks.
|
|
batch_size = self._get_obj_num(inference_state)
|
|
if batch_size == 0:
|
|
raise RuntimeError(
|
|
"No input points or masks are provided for any object; please add inputs first."
|
|
)
|
|
|
|
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
|
# add them into "output_dict".
|
|
for obj_idx in range(batch_size):
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
|
for is_cond in [False, True]:
|
|
# Separately consolidate conditioning and non-conditioning temp outputs
|
|
storage_key = (
|
|
"cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
|
)
|
|
# Find all the frames that contain temporary outputs for any objects
|
|
# (these should be the frames that have just received clicks for mask inputs
|
|
# via `add_new_points_or_box` or `add_new_mask`)
|
|
for frame_idx, out in obj_temp_output_dict[storage_key].items():
|
|
# Run memory encoder on the temporary outputs (if the memory feature is missing)
|
|
if out["maskmem_features"] is None:
|
|
high_res_masks = torch.nn.functional.interpolate(
|
|
out["pred_masks"].to(inference_state["device"]),
|
|
size=(self.image_size, self.image_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
|
inference_state=inference_state,
|
|
frame_idx=frame_idx,
|
|
batch_size=1, # run on the slice of a single object
|
|
high_res_masks=high_res_masks,
|
|
object_score_logits=out["object_score_logits"],
|
|
# these frames are what the user interacted with
|
|
is_mask_from_pts=True,
|
|
)
|
|
out["maskmem_features"] = maskmem_features
|
|
out["maskmem_pos_enc"] = maskmem_pos_enc
|
|
|
|
obj_output_dict[storage_key][frame_idx] = out
|
|
if self.clear_non_cond_mem_around_input:
|
|
# clear non-conditioning memory of the surrounding frames
|
|
self._clear_obj_non_cond_mem_around_input(
|
|
inference_state, frame_idx, obj_idx
|
|
)
|
|
|
|
# clear temporary outputs in `temp_output_dict_per_obj`
|
|
obj_temp_output_dict[storage_key].clear()
|
|
|
|
# check and make sure that every object has received input points or masks
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
if len(obj_output_dict["cond_frame_outputs"]) == 0:
|
|
obj_id = self._obj_idx_to_id(inference_state, obj_idx)
|
|
raise RuntimeError(
|
|
f"No input points or masks are provided for object id {obj_id}; please add inputs first."
|
|
)
|
|
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
|
# output on the same frame in "non_cond_frame_outputs"
|
|
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
|
|
@torch.inference_mode()
|
|
def propagate_in_video(
|
|
self,
|
|
inference_state,
|
|
start_frame_idx=None,
|
|
max_frame_num_to_track=None,
|
|
reverse=False,
|
|
):
|
|
"""Propagate the input points across frames to track in the entire video."""
|
|
self.propagate_in_video_preflight(inference_state)
|
|
|
|
obj_ids = inference_state["obj_ids"]
|
|
num_frames = inference_state["num_frames"]
|
|
batch_size = self._get_obj_num(inference_state)
|
|
|
|
# set start index, end index, and processing order
|
|
if start_frame_idx is None:
|
|
# default: start from the earliest frame with input points
|
|
start_frame_idx = min(
|
|
t
|
|
for obj_output_dict in inference_state["output_dict_per_obj"].values()
|
|
for t in obj_output_dict["cond_frame_outputs"]
|
|
)
|
|
if max_frame_num_to_track is None:
|
|
# default: track all the frames in the video
|
|
max_frame_num_to_track = num_frames
|
|
if reverse:
|
|
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
|
if start_frame_idx > 0:
|
|
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
|
else:
|
|
processing_order = [] # skip reverse tracking if starting from frame 0
|
|
else:
|
|
end_frame_idx = min(
|
|
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
|
)
|
|
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
|
|
|
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
|
pred_masks_per_obj = [None] * batch_size
|
|
for obj_idx in range(batch_size):
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
# We skip those frames already in consolidated outputs (these are frames
|
|
# that received input clicks or mask). Note that we cannot directly run
|
|
# batched forward on them via `_run_single_frame_inference` because the
|
|
# number of clicks on each object might be different.
|
|
if frame_idx in obj_output_dict["cond_frame_outputs"]:
|
|
storage_key = "cond_frame_outputs"
|
|
current_out = obj_output_dict[storage_key][frame_idx]
|
|
pred_masks = current_out["pred_masks"]
|
|
if self.clear_non_cond_mem_around_input:
|
|
# clear non-conditioning memory of the surrounding frames
|
|
self._clear_obj_non_cond_mem_around_input(
|
|
inference_state, frame_idx, obj_idx
|
|
)
|
|
else:
|
|
storage_key = "non_cond_frame_outputs"
|
|
current_out, pred_masks = self._run_single_frame_inference(
|
|
inference_state=inference_state,
|
|
output_dict=obj_output_dict,
|
|
frame_idx=frame_idx,
|
|
batch_size=1, # run on the slice of a single object
|
|
is_init_cond_frame=False,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
reverse=reverse,
|
|
run_mem_encoder=True,
|
|
)
|
|
obj_output_dict[storage_key][frame_idx] = current_out
|
|
|
|
inference_state["frames_tracked_per_obj"][obj_idx][frame_idx] = {
|
|
"reverse": reverse
|
|
}
|
|
pred_masks_per_obj[obj_idx] = pred_masks
|
|
|
|
# Resize the output mask to the original video resolution (we directly use
|
|
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
|
if len(pred_masks_per_obj) > 1:
|
|
all_pred_masks = torch.cat(pred_masks_per_obj, dim=0)
|
|
else:
|
|
all_pred_masks = pred_masks_per_obj[0]
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, all_pred_masks
|
|
)
|
|
yield frame_idx, obj_ids, video_res_masks
|
|
|
|
@torch.inference_mode()
|
|
def clear_all_prompts_in_frame(
|
|
self, inference_state, frame_idx, obj_id, need_output=True
|
|
):
|
|
"""Remove all input points or mask in a specific frame for a given object."""
|
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
|
|
|
# Clear the conditioning information on the given frame
|
|
inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
|
|
|
|
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
|
|
temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
|
|
|
|
# Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
|
|
if out is not None:
|
|
# The frame is not a conditioning frame anymore since it's not receiving inputs,
|
|
# so we "downgrade" its output (if exists) to a non-conditioning frame output.
|
|
obj_output_dict["non_cond_frame_outputs"][frame_idx] = out
|
|
inference_state["frames_tracked_per_obj"][obj_idx].pop(frame_idx, None)
|
|
|
|
if not need_output:
|
|
return
|
|
# Finally, output updated masks per object (after removing the inputs above)
|
|
obj_ids = inference_state["obj_ids"]
|
|
is_cond = any(
|
|
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
|
)
|
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond=is_cond,
|
|
consolidate_at_video_res=True,
|
|
)
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, consolidated_out["pred_masks_video_res"]
|
|
)
|
|
return frame_idx, obj_ids, video_res_masks
|
|
|
|
@torch.inference_mode()
|
|
def reset_state(self, inference_state):
|
|
"""Remove all input points or mask in all frames throughout the video."""
|
|
self._reset_tracking_results(inference_state)
|
|
# Remove all object ids
|
|
inference_state["obj_id_to_idx"].clear()
|
|
inference_state["obj_idx_to_id"].clear()
|
|
inference_state["obj_ids"].clear()
|
|
inference_state["point_inputs_per_obj"].clear()
|
|
inference_state["mask_inputs_per_obj"].clear()
|
|
inference_state["output_dict_per_obj"].clear()
|
|
inference_state["temp_output_dict_per_obj"].clear()
|
|
inference_state["frames_tracked_per_obj"].clear()
|
|
|
|
def _reset_tracking_results(self, inference_state):
|
|
"""Reset all tracking inputs and results across the videos."""
|
|
for v in inference_state["point_inputs_per_obj"].values():
|
|
v.clear()
|
|
for v in inference_state["mask_inputs_per_obj"].values():
|
|
v.clear()
|
|
for v in inference_state["output_dict_per_obj"].values():
|
|
v["cond_frame_outputs"].clear()
|
|
v["non_cond_frame_outputs"].clear()
|
|
for v in inference_state["temp_output_dict_per_obj"].values():
|
|
v["cond_frame_outputs"].clear()
|
|
v["non_cond_frame_outputs"].clear()
|
|
for v in inference_state["frames_tracked_per_obj"].values():
|
|
v.clear()
|
|
|
|
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
|
"""Compute the image features on a given frame."""
|
|
# Look up in the cache first
|
|
image, backbone_out = inference_state["cached_features"].get(
|
|
frame_idx, (None, None)
|
|
)
|
|
if backbone_out is None:
|
|
# Cache miss -- we will run inference on a single image
|
|
device = inference_state["device"]
|
|
image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
|
|
backbone_out = self.forward_image(image)
|
|
# Cache the most recent frame's feature (for repeated interactions with
|
|
# a frame; we can use an LRU cache for more frames in the future).
|
|
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
|
|
|
# expand the features to have the same dimension as the number of objects
|
|
expanded_image = image.expand(batch_size, -1, -1, -1)
|
|
expanded_backbone_out = {
|
|
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
|
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
|
}
|
|
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
|
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
|
batch_size, -1, -1, -1
|
|
)
|
|
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
|
pos = pos.expand(batch_size, -1, -1, -1)
|
|
expanded_backbone_out["vision_pos_enc"][i] = pos
|
|
|
|
features = self._prepare_backbone_features(expanded_backbone_out)
|
|
features = (expanded_image,) + features
|
|
return features
|
|
|
|
def _run_single_frame_inference(
|
|
self,
|
|
inference_state,
|
|
output_dict,
|
|
frame_idx,
|
|
batch_size,
|
|
is_init_cond_frame,
|
|
point_inputs,
|
|
mask_inputs,
|
|
reverse,
|
|
run_mem_encoder,
|
|
prev_sam_mask_logits=None,
|
|
):
|
|
"""Run tracking on a single frame based on current inputs and previous memory."""
|
|
# Retrieve correct image features
|
|
(
|
|
_,
|
|
_,
|
|
current_vision_feats,
|
|
current_vision_pos_embeds,
|
|
feat_sizes,
|
|
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
|
|
|
# point and mask should not appear as input simultaneously on the same frame
|
|
assert point_inputs is None or mask_inputs is None
|
|
current_out = self.track_step(
|
|
frame_idx=frame_idx,
|
|
is_init_cond_frame=is_init_cond_frame,
|
|
current_vision_feats=current_vision_feats,
|
|
current_vision_pos_embeds=current_vision_pos_embeds,
|
|
feat_sizes=feat_sizes,
|
|
point_inputs=point_inputs,
|
|
mask_inputs=mask_inputs,
|
|
output_dict=output_dict,
|
|
num_frames=inference_state["num_frames"],
|
|
track_in_reverse=reverse,
|
|
run_mem_encoder=run_mem_encoder,
|
|
prev_sam_mask_logits=prev_sam_mask_logits,
|
|
)
|
|
|
|
# optionally offload the output to CPU memory to save GPU space
|
|
storage_device = inference_state["storage_device"]
|
|
maskmem_features = current_out["maskmem_features"]
|
|
if maskmem_features is not None:
|
|
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
pred_masks_gpu = current_out["pred_masks"]
|
|
# potentially fill holes in the predicted masks
|
|
if self.fill_hole_area > 0:
|
|
pred_masks_gpu = fill_holes_in_mask_scores(
|
|
pred_masks_gpu, self.fill_hole_area
|
|
)
|
|
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
|
|
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
|
obj_ptr = current_out["obj_ptr"]
|
|
object_score_logits = current_out["object_score_logits"]
|
|
# make a compact version of this frame's output to reduce the state size
|
|
compact_current_out = {
|
|
"maskmem_features": maskmem_features,
|
|
"maskmem_pos_enc": maskmem_pos_enc,
|
|
"pred_masks": pred_masks,
|
|
"obj_ptr": obj_ptr,
|
|
"object_score_logits": object_score_logits,
|
|
}
|
|
return compact_current_out, pred_masks_gpu
|
|
|
|
def _run_memory_encoder(
|
|
self,
|
|
inference_state,
|
|
frame_idx,
|
|
batch_size,
|
|
high_res_masks,
|
|
object_score_logits,
|
|
is_mask_from_pts,
|
|
):
|
|
"""
|
|
Run the memory encoder on `high_res_masks`. This is usually after applying
|
|
non-overlapping constraints to object scores. Since their scores changed, their
|
|
memory also need to be computed again with the memory encoder.
|
|
"""
|
|
# Retrieve correct image features
|
|
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
|
inference_state, frame_idx, batch_size
|
|
)
|
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
|
current_vision_feats=current_vision_feats,
|
|
feat_sizes=feat_sizes,
|
|
pred_masks_high_res=high_res_masks,
|
|
object_score_logits=object_score_logits,
|
|
is_mask_from_pts=is_mask_from_pts,
|
|
)
|
|
|
|
# optionally offload the output to CPU memory to save GPU space
|
|
storage_device = inference_state["storage_device"]
|
|
maskmem_features = maskmem_features.to(torch.bfloat16)
|
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
|
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
|
maskmem_pos_enc = self._get_maskmem_pos_enc(
|
|
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
|
)
|
|
return maskmem_features, maskmem_pos_enc
|
|
|
|
def _get_maskmem_pos_enc(self, inference_state, current_out):
|
|
"""
|
|
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
|
a constant in the inference session to reduce session storage size.
|
|
"""
|
|
model_constants = inference_state["constants"]
|
|
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
|
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
|
if out_maskmem_pos_enc is not None:
|
|
if "maskmem_pos_enc" not in model_constants:
|
|
assert isinstance(out_maskmem_pos_enc, list)
|
|
# only take the slice for one object, since it's same across objects
|
|
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
|
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
|
else:
|
|
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
|
# expand the cached maskmem_pos_enc to the actual batch size
|
|
batch_size = out_maskmem_pos_enc[0].size(0)
|
|
expanded_maskmem_pos_enc = [
|
|
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
|
]
|
|
else:
|
|
expanded_maskmem_pos_enc = None
|
|
return expanded_maskmem_pos_enc
|
|
|
|
@torch.inference_mode()
|
|
def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
|
|
"""
|
|
Remove an object id from the tracking state. If strict is True, we check whether
|
|
the object id actually exists and raise an error if it doesn't exist.
|
|
"""
|
|
old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
|
|
updated_frames = []
|
|
# Check whether this object_id to remove actually exists and possibly raise an error.
|
|
if old_obj_idx_to_rm is None:
|
|
if not strict:
|
|
return inference_state["obj_ids"], updated_frames
|
|
raise RuntimeError(
|
|
f"Cannot remove object id {obj_id} as it doesn't exist. "
|
|
f"All existing object ids: {inference_state['obj_ids']}."
|
|
)
|
|
|
|
# If this is the only remaining object id, we simply reset the state.
|
|
if len(inference_state["obj_id_to_idx"]) == 1:
|
|
self.reset_state(inference_state)
|
|
return inference_state["obj_ids"], updated_frames
|
|
|
|
# There are still remaining objects after removing this object id. In this case,
|
|
# we need to delete the object storage from inference state tensors.
|
|
# Step 0: clear the input on those frames where this object id has point or mask input
|
|
# (note that this step is required as it might downgrade conditioning frames to
|
|
# non-conditioning ones)
|
|
obj_input_frames_inds = set()
|
|
obj_input_frames_inds.update(
|
|
inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
|
|
)
|
|
obj_input_frames_inds.update(
|
|
inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
|
|
)
|
|
for frame_idx in obj_input_frames_inds:
|
|
self.clear_all_prompts_in_frame(
|
|
inference_state, frame_idx, obj_id, need_output=False
|
|
)
|
|
|
|
# Step 1: Update the object id mapping (note that it must be done after Step 0,
|
|
# since Step 0 still requires the old object id mappings in inference_state)
|
|
old_obj_ids = inference_state["obj_ids"]
|
|
old_obj_inds = list(range(len(old_obj_ids)))
|
|
remain_old_obj_inds = old_obj_inds.copy()
|
|
remain_old_obj_inds.remove(old_obj_idx_to_rm)
|
|
new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
|
|
new_obj_inds = list(range(len(new_obj_ids)))
|
|
# build new mappings
|
|
old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
|
|
inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
|
|
inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
|
|
inference_state["obj_ids"] = new_obj_ids
|
|
|
|
# Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
|
|
def _map_keys(container):
|
|
new_kvs = []
|
|
for k in old_obj_inds:
|
|
v = container.pop(k)
|
|
if k in old_idx_to_new_idx:
|
|
new_kvs.append((old_idx_to_new_idx[k], v))
|
|
container.update(new_kvs)
|
|
|
|
_map_keys(inference_state["point_inputs_per_obj"])
|
|
_map_keys(inference_state["mask_inputs_per_obj"])
|
|
_map_keys(inference_state["output_dict_per_obj"])
|
|
_map_keys(inference_state["temp_output_dict_per_obj"])
|
|
_map_keys(inference_state["frames_tracked_per_obj"])
|
|
|
|
# Step 3: Further collect the outputs on those frames in `obj_input_frames_inds`, which
|
|
# could show an updated mask for objects previously occluded by the object being removed
|
|
if need_output:
|
|
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
|
for frame_idx in obj_input_frames_inds:
|
|
is_cond = any(
|
|
frame_idx in obj_temp_output_dict["cond_frame_outputs"]
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values()
|
|
)
|
|
consolidated_out = self._consolidate_temp_output_across_obj(
|
|
inference_state,
|
|
frame_idx,
|
|
is_cond=is_cond,
|
|
consolidate_at_video_res=True,
|
|
)
|
|
_, video_res_masks = self._get_orig_video_res_output(
|
|
inference_state, consolidated_out["pred_masks_video_res"]
|
|
)
|
|
updated_frames.append((frame_idx, video_res_masks))
|
|
|
|
return inference_state["obj_ids"], updated_frames
|
|
|
|
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
|
"""
|
|
Remove the non-conditioning memory around the input frame. When users provide
|
|
correction clicks, the surrounding frames' non-conditioning memories can still
|
|
contain outdated object appearance information and could confuse the model.
|
|
|
|
This method clears those non-conditioning memories surrounding the interacted
|
|
frame to avoid giving the model both old and new information about the object.
|
|
"""
|
|
r = self.memory_temporal_stride_for_eval
|
|
frame_idx_begin = frame_idx - r * self.num_maskmem
|
|
frame_idx_end = frame_idx + r * self.num_maskmem
|
|
batch_size = self._get_obj_num(inference_state)
|
|
for obj_idx in range(batch_size):
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
|
non_cond_frame_outputs = obj_output_dict["non_cond_frame_outputs"]
|
|
for t in range(frame_idx_begin, frame_idx_end + 1):
|
|
non_cond_frame_outputs.pop(t, None)
|
|
|
|
|
|
class SAM2VideoPredictorVOS(SAM2VideoPredictor):
|
|
"""Optimized for the VOS setting"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._compile_all_components()
|
|
|
|
def _compile_all_components(self):
|
|
print("Compiling all components for VOS setting. First time may be very slow.")
|
|
self.memory_encoder.forward = torch.compile(
|
|
self.memory_encoder.forward,
|
|
mode="max-autotune",
|
|
fullgraph=True,
|
|
dynamic=False,
|
|
)
|
|
|
|
self.memory_attention.forward = torch.compile(
|
|
self.memory_attention.forward,
|
|
mode="max-autotune",
|
|
fullgraph=True,
|
|
dynamic=True, # Num. of memories varies
|
|
)
|
|
|
|
self.sam_prompt_encoder.forward = torch.compile(
|
|
self.sam_prompt_encoder.forward,
|
|
mode="max-autotune",
|
|
fullgraph=True,
|
|
dynamic=False, # Accuracy regression on True
|
|
)
|
|
|
|
self.sam_mask_decoder.forward = torch.compile(
|
|
self.sam_mask_decoder.forward,
|
|
mode="max-autotune",
|
|
fullgraph=True,
|
|
dynamic=False, # Accuracy regression on True
|
|
)
|
|
|
|
def forward_image(self, img_batch: torch.Tensor):
|
|
"""
|
|
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
cloning the backbone features and pos encoding to enable compilation.
|
|
"""
|
|
backbone_out = self.image_encoder(img_batch)
|
|
if self.use_high_res_features_in_sam:
|
|
# precompute projected level 0 and level 1 features in SAM decoder
|
|
# to avoid running it again on every SAM click
|
|
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
|
backbone_out["backbone_fpn"][0]
|
|
)
|
|
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
|
backbone_out["backbone_fpn"][1]
|
|
)
|
|
# Clone to help torch.compile
|
|
for i in range(len(backbone_out["backbone_fpn"])):
|
|
backbone_out["backbone_fpn"][i] = backbone_out["backbone_fpn"][i].clone()
|
|
backbone_out["vision_pos_enc"][i] = backbone_out["vision_pos_enc"][
|
|
i
|
|
].clone()
|
|
return backbone_out
|
|
|
|
def _forward_sam_heads(
|
|
self,
|
|
backbone_features,
|
|
point_inputs=None,
|
|
mask_inputs=None,
|
|
high_res_features=None,
|
|
multimask_output=False,
|
|
):
|
|
"""
|
|
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
cloning the outputs of prompt_encoder and mask_decoder to enable compilation.
|
|
"""
|
|
B = backbone_features.size(0)
|
|
device = backbone_features.device
|
|
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
|
assert backbone_features.size(2) == self.sam_image_embedding_size
|
|
assert backbone_features.size(3) == self.sam_image_embedding_size
|
|
|
|
# a) Handle point prompts
|
|
if point_inputs is not None:
|
|
sam_point_coords = point_inputs["point_coords"]
|
|
sam_point_labels = point_inputs["point_labels"]
|
|
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
|
else:
|
|
# If no points are provide, pad with an empty point (with label -1)
|
|
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
|
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
|
|
|
# b) Handle mask prompts
|
|
if mask_inputs is not None:
|
|
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
|
# and feed it as a dense mask prompt into the SAM mask encoder
|
|
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
|
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
|
sam_mask_prompt = F.interpolate(
|
|
mask_inputs.float(),
|
|
size=self.sam_prompt_encoder.mask_input_size,
|
|
align_corners=False,
|
|
mode="bilinear",
|
|
antialias=True, # use antialias for downsampling
|
|
)
|
|
else:
|
|
sam_mask_prompt = mask_inputs
|
|
else:
|
|
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
|
# a learned `no_mask_embed` to indicate no mask input in this case).
|
|
sam_mask_prompt = None
|
|
|
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
|
points=(sam_point_coords, sam_point_labels),
|
|
boxes=None,
|
|
masks=sam_mask_prompt,
|
|
)
|
|
# Clone image_pe and the outputs of sam_prompt_encoder
|
|
# to enable compilation
|
|
sparse_embeddings = sparse_embeddings.clone()
|
|
dense_embeddings = dense_embeddings.clone()
|
|
image_pe = self.sam_prompt_encoder.get_dense_pe().clone()
|
|
(
|
|
low_res_multimasks,
|
|
ious,
|
|
sam_output_tokens,
|
|
object_score_logits,
|
|
) = self.sam_mask_decoder(
|
|
image_embeddings=backbone_features,
|
|
image_pe=image_pe,
|
|
sparse_prompt_embeddings=sparse_embeddings,
|
|
dense_prompt_embeddings=dense_embeddings,
|
|
multimask_output=multimask_output,
|
|
repeat_image=False, # the image is already batched
|
|
high_res_features=high_res_features,
|
|
)
|
|
# Clone the output of sam_mask_decoder
|
|
# to enable compilation
|
|
low_res_multimasks = low_res_multimasks.clone()
|
|
ious = ious.clone()
|
|
sam_output_tokens = sam_output_tokens.clone()
|
|
object_score_logits = object_score_logits.clone()
|
|
|
|
if self.pred_obj_scores:
|
|
is_obj_appearing = object_score_logits > 0
|
|
|
|
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
|
# consistent with the actual mask prediction
|
|
low_res_multimasks = torch.where(
|
|
is_obj_appearing[:, None, None],
|
|
low_res_multimasks,
|
|
NO_OBJ_SCORE,
|
|
)
|
|
|
|
# convert masks from possibly bfloat16 (or float16) to float32
|
|
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
|
low_res_multimasks = low_res_multimasks.float()
|
|
high_res_multimasks = F.interpolate(
|
|
low_res_multimasks,
|
|
size=(self.image_size, self.image_size),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
|
|
sam_output_token = sam_output_tokens[:, 0]
|
|
if multimask_output:
|
|
# take the best mask prediction (with the highest IoU estimation)
|
|
best_iou_inds = torch.argmax(ious, dim=-1)
|
|
batch_inds = torch.arange(B, device=device)
|
|
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
|
if sam_output_tokens.size(1) > 1:
|
|
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
|
else:
|
|
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
|
|
|
# Extract object pointer from the SAM output token (with occlusion handling)
|
|
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
|
if self.pred_obj_scores:
|
|
# Allow *soft* no obj ptr, unlike for masks
|
|
if self.soft_no_obj_ptr:
|
|
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
|
else:
|
|
lambda_is_obj_appearing = is_obj_appearing.float()
|
|
|
|
if self.fixed_no_obj_ptr:
|
|
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
|
|
|
return (
|
|
low_res_multimasks,
|
|
high_res_multimasks,
|
|
ious,
|
|
low_res_masks,
|
|
high_res_masks,
|
|
obj_ptr,
|
|
object_score_logits,
|
|
)
|
|
|
|
def _encode_new_memory(
|
|
self,
|
|
current_vision_feats,
|
|
feat_sizes,
|
|
pred_masks_high_res,
|
|
object_score_logits,
|
|
is_mask_from_pts,
|
|
):
|
|
"""
|
|
Identical to the corresponding method in the parent (SAM2VideoPredictor), but
|
|
cloning the memories and their pos enc to enable compilation.
|
|
"""
|
|
B = current_vision_feats[-1].size(1) # batch size on this frame
|
|
C = self.hidden_dim
|
|
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
|
# top-level feature, (HW)BC => BCHW
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
|
if self.non_overlap_masks_for_mem_enc and not self.training:
|
|
# optionally, apply non-overlapping constraints to the masks (it's applied
|
|
# in the batch dimension and should only be used during eval, where all
|
|
# the objects come from the same video under batch size 1).
|
|
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
|
pred_masks_high_res
|
|
)
|
|
# scale the raw mask logits with a temperature before applying sigmoid
|
|
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
|
if binarize and not self.training:
|
|
mask_for_mem = (pred_masks_high_res > 0).float()
|
|
else:
|
|
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
|
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
|
# apply scale and bias terms to the sigmoid probabilities
|
|
if self.sigmoid_scale_for_mem_enc != 1.0:
|
|
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
|
if self.sigmoid_bias_for_mem_enc != 0.0:
|
|
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
|
maskmem_out = self.memory_encoder(
|
|
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
|
)
|
|
# Clone the feats and pos_enc to enable compilation
|
|
maskmem_features = maskmem_out["vision_features"].clone()
|
|
maskmem_pos_enc = [m.clone() for m in maskmem_out["vision_pos_enc"]]
|
|
# add a no-object embedding to the spatial memory to indicate that the frame
|
|
# is predicted to be occluded (i.e. no object is appearing in the frame)
|
|
if self.no_obj_embed_spatial is not None:
|
|
is_obj_appearing = (object_score_logits > 0).float()
|
|
maskmem_features += (
|
|
1 - is_obj_appearing[..., None, None]
|
|
) * self.no_obj_embed_spatial[..., None, None].expand(
|
|
*maskmem_features.shape
|
|
)
|
|
|
|
return maskmem_features, maskmem_pos_enc
|