Files
Grounded-SAM-2/lib/train/dataset/got10k_lmdb.py
2024-11-19 22:12:54 -08:00

184 lines
7.8 KiB
Python

import os
import os.path
import numpy as np
import torch
import csv
import pandas
import random
from collections import OrderedDict
from .base_video_dataset import BaseVideoDataset
from lib.train.data import jpeg4py_loader
from lib.train.admin import env_settings
'''2021.1.16 Gok10k for loading lmdb dataset'''
from lib.utils.lmdb_utils import *
class Got10k_lmdb(BaseVideoDataset):
def __init__(self, root=None, image_loader=jpeg4py_loader, split=None, seq_ids=None, data_fraction=None):
"""
args:
root - path to the got-10k training data. Note: This should point to the 'train' folder inside GOT-10k
image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
is used by default.
split - 'train' or 'val'. Note: The validation split here is a subset of the official got-10k train split,
not NOT the official got-10k validation split. To use the official validation split, provide that as
the root folder instead.
seq_ids - List containing the ids of the videos to be used for training. Note: Only one of 'split' or 'seq_ids'
options can be used at the same time.
data_fraction - Fraction of dataset to be used. The complete dataset is used by default
use_lmdb - whether the dataset is stored in lmdb format
"""
root = env_settings().got10k_lmdb_dir if root is None else root
super().__init__('GOT10k_lmdb', root, image_loader)
# all folders inside the root
self.sequence_list = self._get_sequence_list()
# seq_id is the index of the folder inside the got10k root path
if split is not None:
if seq_ids is not None:
raise ValueError('Cannot set both split_name and seq_ids.')
train_lib_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
if split == 'train':
file_path = os.path.join(train_lib_path, 'data_specs', 'got10k_train_split.txt')
elif split == 'val':
file_path = os.path.join(train_lib_path, 'data_specs', 'got10k_val_split.txt')
elif split == 'train_full':
file_path = os.path.join(train_lib_path, 'data_specs', 'got10k_train_full_split.txt')
elif split == 'vottrain':
file_path = os.path.join(train_lib_path, 'data_specs', 'got10k_vot_train_split.txt')
elif split == 'votval':
file_path = os.path.join(train_lib_path, 'data_specs', 'got10k_vot_val_split.txt')
else:
raise ValueError('Unknown split name.')
seq_ids = pandas.read_csv(file_path, header=None, squeeze=True, dtype=np.int64).values.tolist()
elif seq_ids is None:
seq_ids = list(range(0, len(self.sequence_list)))
self.sequence_list = [self.sequence_list[i] for i in seq_ids]
if data_fraction is not None:
self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction))
self.sequence_meta_info = self._load_meta_info()
self.seq_per_class = self._build_seq_per_class()
self.class_list = list(self.seq_per_class.keys())
self.class_list.sort()
def get_name(self):
return 'got10k_lmdb'
def has_class_info(self):
return True
def has_occlusion_info(self):
return True
def _load_meta_info(self):
def _read_meta(meta_info):
object_meta = OrderedDict({'object_class_name': meta_info[5].split(': ')[-1],
'motion_class': meta_info[6].split(': ')[-1],
'major_class': meta_info[7].split(': ')[-1],
'root_class': meta_info[8].split(': ')[-1],
'motion_adverb': meta_info[9].split(': ')[-1]})
return object_meta
sequence_meta_info = {}
for s in self.sequence_list:
try:
meta_str = decode_str(self.root, "train/%s/meta_info.ini" %s)
sequence_meta_info[s] = _read_meta(meta_str.split('\n'))
except:
sequence_meta_info[s] = OrderedDict({'object_class_name': None,
'motion_class': None,
'major_class': None,
'root_class': None,
'motion_adverb': None})
return sequence_meta_info
def _build_seq_per_class(self):
seq_per_class = {}
for i, s in enumerate(self.sequence_list):
object_class = self.sequence_meta_info[s]['object_class_name']
if object_class in seq_per_class:
seq_per_class[object_class].append(i)
else:
seq_per_class[object_class] = [i]
return seq_per_class
def get_sequences_in_class(self, class_name):
return self.seq_per_class[class_name]
def _get_sequence_list(self):
dir_str = decode_str(self.root, 'train/list.txt')
dir_list = dir_str.split('\n')
return dir_list
def _read_bb_anno(self, seq_path):
bb_anno_file = os.path.join(seq_path, "groundtruth.txt")
gt_str_list = decode_str(self.root, bb_anno_file).split('\n')[:-1] # the last line in got10k is empty
gt_list = [list(map(float, line.split(','))) for line in gt_str_list]
gt_arr = np.array(gt_list).astype(np.float32)
return torch.tensor(gt_arr)
def _read_target_visible(self, seq_path):
# full occlusion and out_of_view files
occlusion_file = os.path.join(seq_path, "absence.label")
cover_file = os.path.join(seq_path, "cover.label")
# Read these files
occ_list = list(map(int, decode_str(self.root, occlusion_file).split('\n')[:-1])) # the last line in got10k is empty
occlusion = torch.ByteTensor(occ_list)
cover_list = list(map(int, decode_str(self.root, cover_file).split('\n')[:-1])) # the last line in got10k is empty
cover = torch.ByteTensor(cover_list)
target_visible = ~occlusion & (cover>0).byte()
visible_ratio = cover.float() / 8
return target_visible, visible_ratio
def _get_sequence_path(self, seq_id):
return os.path.join("train", self.sequence_list[seq_id])
def get_sequence_info(self, seq_id):
seq_path = self._get_sequence_path(seq_id)
bbox = self._read_bb_anno(seq_path)
valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0)
visible, visible_ratio = self._read_target_visible(seq_path)
visible = visible & valid.byte()
return {'bbox': bbox, 'valid': valid, 'visible': visible, 'visible_ratio': visible_ratio}
def _get_frame_path(self, seq_path, frame_id):
return os.path.join(seq_path, '{:08}.jpg'.format(frame_id+1)) # frames start from 1
def _get_frame(self, seq_path, frame_id):
return decode_img(self.root, self._get_frame_path(seq_path, frame_id))
def get_class_name(self, seq_id):
obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]
return obj_meta['object_class_name']
def get_frames(self, seq_id, frame_ids, anno=None):
seq_path = self._get_sequence_path(seq_id)
obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]
frame_list = [self._get_frame(seq_path, f_id) for f_id in frame_ids]
if anno is None:
anno = self.get_sequence_info(seq_id)
anno_frames = {}
for key, value in anno.items():
anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids]
return frame_list, anno_frames, obj_meta