Files
Grounded-SAM-2/lib/train/train_script.py
2024-11-19 22:12:54 -08:00

204 lines
9.6 KiB
Python

import os
# loss function related
from lib.utils.box_ops import giou_loss
from torch.nn.functional import l1_loss
from torch.nn import BCEWithLogitsLoss
# train pipeline related
from lib.train.trainers import LTRTrainer, LTRSeqTrainer
from lib.train.dataset import Lasot, Got10k, MSCOCOSeq, ImagenetVID, TrackingNet
from lib.train.dataset import Lasot_lmdb, Got10k_lmdb, MSCOCOSeq_lmdb, ImagenetVID_lmdb, TrackingNet_lmdb
from lib.train.data import sampler, opencv_loader, processing, LTRLoader, sequence_sampler
# distributed training related
from torch.nn.parallel import DistributedDataParallel as DDP
# some more advanced functions
from .base_functions import *
# network related
from lib.models.artrack import build_artrack
from lib.models.artrack_seq import build_artrack_seq
# forward propagation related
from lib.train.actors import ARTrackActor, ARTrackSeqActor
# for import modules
import importlib
from ..utils.focal_loss import FocalLoss
def names2datasets(name_list: list, settings, image_loader):
assert isinstance(name_list, list)
datasets = []
#settings.use_lmdb = True
for name in name_list:
assert name in ["LASOT", "GOT10K_vottrain", "GOT10K_votval", "GOT10K_train_full", "GOT10K_official_val",
"COCO17", "VID", "TRACKINGNET"]
if name == "LASOT":
if settings.use_lmdb:
print("Building lasot dataset from lmdb")
datasets.append(Lasot_lmdb(settings.env.lasot_lmdb_dir, split='train', image_loader=image_loader))
else:
datasets.append(Lasot(settings.env.lasot_dir, split='train', image_loader=image_loader))
if name == "GOT10K_vottrain":
if settings.use_lmdb:
print("Building got10k from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='vottrain', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='vottrain', image_loader=image_loader))
if name == "GOT10K_train_full":
if settings.use_lmdb:
print("Building got10k_train_full from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='train_full', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='train_full', image_loader=image_loader))
if name == "GOT10K_votval":
if settings.use_lmdb:
print("Building got10k from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='votval', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='votval', image_loader=image_loader))
if name == "GOT10K_official_val":
if settings.use_lmdb:
raise ValueError("Not implement")
else:
datasets.append(Got10k(settings.env.got10k_val_dir, split=None, image_loader=image_loader))
if name == "COCO17":
if settings.use_lmdb:
print("Building COCO2017 from lmdb")
datasets.append(MSCOCOSeq_lmdb(settings.env.coco_lmdb_dir, version="2017", image_loader=image_loader))
else:
datasets.append(MSCOCOSeq(settings.env.coco_dir, version="2017", image_loader=image_loader))
if name == "VID":
if settings.use_lmdb:
print("Building VID from lmdb")
datasets.append(ImagenetVID_lmdb(settings.env.imagenet_lmdb_dir, image_loader=image_loader))
else:
datasets.append(ImagenetVID(settings.env.imagenet_dir, image_loader=image_loader))
if name == "TRACKINGNET":
if settings.use_lmdb:
print("Building TrackingNet from lmdb")
datasets.append(TrackingNet_lmdb(settings.env.trackingnet_lmdb_dir, image_loader=image_loader))
else:
# raise ValueError("NOW WE CAN ONLY USE TRACKINGNET FROM LMDB")
datasets.append(TrackingNet(settings.env.trackingnet_dir, image_loader=image_loader))
return datasets
def slt_collate(batch):
ret = {}
for k in batch[0].keys():
here_list = []
for ex in batch:
here_list.append(ex[k])
ret[k] = here_list
return ret
class SLTLoader(torch.utils.data.dataloader.DataLoader):
"""
Data loader. Combines a dataset and a sampler, and provides
single- or multi-process iterators over the dataset.
"""
__initialized = False
def __init__(self, name, dataset, training=True, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
num_workers=0, epoch_interval=1, collate_fn=None, stack_dim=0, pin_memory=False, drop_last=False,
timeout=0, worker_init_fn=None):
if collate_fn is None:
collate_fn = slt_collate
super(SLTLoader, self).__init__(dataset, batch_size, shuffle, sampler, batch_sampler,
num_workers, collate_fn, pin_memory, drop_last,
timeout, worker_init_fn)
self.name = name
self.training = training
self.epoch_interval = epoch_interval
self.stack_dim = stack_dim
def run(settings):
settings.description = 'Training script for STARK-S, STARK-ST stage1, and STARK-ST stage2'
# update the default configs with config file
if not os.path.exists(settings.cfg_file):
raise ValueError("%s doesn't exist." % settings.cfg_file)
config_module = importlib.import_module("lib.config.%s.config" % settings.script_name)
cfg = config_module.cfg
config_module.update_config_from_file(settings.cfg_file)
if settings.local_rank in [-1, 0]:
print("New configuration is shown below.")
for key in cfg.keys():
print("%s configuration:" % key, cfg[key])
print('\n')
# update settings based on cfg
update_settings(settings, cfg)
# Record the training log
log_dir = os.path.join(settings.save_dir, 'logs')
if settings.local_rank in [-1, 0]:
if not os.path.exists(log_dir):
os.makedirs(log_dir)
settings.log_file = os.path.join(log_dir, "%s-%s.log" % (settings.script_name, settings.config_name))
# Build dataloaders
if "RepVGG" in cfg.MODEL.BACKBONE.TYPE or "swin" in cfg.MODEL.BACKBONE.TYPE or "LightTrack" in cfg.MODEL.BACKBONE.TYPE:
cfg.ckpt_dir = settings.save_dir
bins = cfg.MODEL.BINS
search_size = cfg.DATA.SEARCH.SIZE
# Create network
if settings.script_name == "artrack":
net = build_artrack(cfg)
loader_train, loader_val = build_dataloaders(cfg, settings)
elif settings.script_name == "artrack_seq":
net = build_artrack_seq(cfg)
dataset_train = sequence_sampler.SequenceSampler(
datasets=names2datasets(cfg.DATA.TRAIN.DATASETS_NAME, settings, opencv_loader),
p_datasets=cfg.DATA.TRAIN.DATASETS_RATIO,
samples_per_epoch=cfg.DATA.TRAIN.SAMPLE_PER_EPOCH,
max_gap=cfg.DATA.MAX_GAP, max_interval=cfg.DATA.MAX_INTERVAL,
num_search_frames=cfg.DATA.SEARCH.NUMBER, num_template_frames=1,
frame_sample_mode='random_interval',
prob=cfg.DATA.INTERVAL_PROB)
loader_train = SLTLoader('train', dataset_train, training=True, batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=cfg.TRAIN.NUM_WORKER,
shuffle=False, drop_last=True)
else:
raise ValueError("illegal script name")
# wrap networks to distributed one
net.cuda()
if settings.local_rank != -1:
# net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net) # add syncBN converter
net = DDP(net, device_ids=[settings.local_rank], find_unused_parameters=True)
settings.device = torch.device("cuda:%d" % settings.local_rank)
else:
settings.device = torch.device("cuda:0")
settings.deep_sup = getattr(cfg.TRAIN, "DEEP_SUPERVISION", False)
settings.distill = getattr(cfg.TRAIN, "DISTILL", False)
settings.distill_loss_type = getattr(cfg.TRAIN, "DISTILL_LOSS_TYPE", "KL")
# Loss functions and Actors
if settings.script_name == "artrack":
focal_loss = FocalLoss()
objective = {'giou': giou_loss, 'l1': l1_loss, 'focal': focal_loss}
loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT, 'focal': 2.}
actor = ARTrackActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings, cfg=cfg, bins=bins, search_size=search_size)
elif settings.script_name == "artrack_seq":
focal_loss = FocalLoss()
objective = {'giou': giou_loss, 'l1': l1_loss, 'focal': focal_loss}
loss_weight = {'giou': cfg.TRAIN.GIOU_WEIGHT, 'l1': cfg.TRAIN.L1_WEIGHT, 'focal': 2.}
actor = ARTrackSeqActor(net=net, objective=objective, loss_weight=loss_weight, settings=settings, cfg=cfg, bins=bins, search_size=search_size)
else:
raise ValueError("illegal script name")
# if cfg.TRAIN.DEEP_SUPERVISION:
# raise ValueError("Deep supervision is not supported now.")
# Optimizer, parameters, and learning rates
optimizer, lr_scheduler = get_optimizer_scheduler(net, cfg)
use_amp = getattr(cfg.TRAIN, "AMP", False)
if settings.script_name == "artrack":
trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler, use_amp=use_amp)
elif settings.script_name == "artrack_seq":
trainer = LTRSeqTrainer(actor, [loader_train], optimizer, settings, lr_scheduler, use_amp=use_amp)
# train process
trainer.train(cfg.TRAIN.EPOCH, load_latest=True, fail_safe=True)