Files
Grounded-SAM-2/lib/train/base_functions.py
2024-11-19 22:12:54 -08:00

194 lines
11 KiB
Python

import torch
from torch.utils.data.distributed import DistributedSampler
# datasets related
from lib.train.dataset import Lasot, Got10k, MSCOCOSeq, ImagenetVID, TrackingNet
from lib.train.dataset import Lasot_lmdb, Got10k_lmdb, MSCOCOSeq_lmdb, ImagenetVID_lmdb, TrackingNet_lmdb
from lib.train.data import sampler, opencv_loader, processing, LTRLoader
import lib.train.data.transforms as tfm
from lib.utils.misc import is_main_process
def update_settings(settings, cfg):
settings.print_interval = cfg.TRAIN.PRINT_INTERVAL
settings.search_area_factor = {'template': cfg.DATA.TEMPLATE.FACTOR,
'search': cfg.DATA.SEARCH.FACTOR}
settings.output_sz = {'template': cfg.DATA.TEMPLATE.SIZE,
'search': cfg.DATA.SEARCH.SIZE}
settings.center_jitter_factor = {'template': cfg.DATA.TEMPLATE.CENTER_JITTER,
'search': cfg.DATA.SEARCH.CENTER_JITTER}
settings.scale_jitter_factor = {'template': cfg.DATA.TEMPLATE.SCALE_JITTER,
'search': cfg.DATA.SEARCH.SCALE_JITTER}
settings.grad_clip_norm = cfg.TRAIN.GRAD_CLIP_NORM
settings.print_stats = None
settings.batchsize = cfg.TRAIN.BATCH_SIZE
settings.scheduler_type = cfg.TRAIN.SCHEDULER.TYPE
def names2datasets(name_list: list, settings, image_loader):
assert isinstance(name_list, list)
datasets = []
#settings.use_lmdb = True
for name in name_list:
assert name in ["LASOT", "GOT10K_vottrain", "GOT10K_votval", "GOT10K_train_full", "GOT10K_official_val",
"COCO17", "VID", "TRACKINGNET"]
if name == "LASOT":
if settings.use_lmdb:
print("Building lasot dataset from lmdb")
datasets.append(Lasot_lmdb(settings.env.lasot_lmdb_dir, split='train', image_loader=image_loader))
else:
datasets.append(Lasot(settings.env.lasot_dir, split='train', image_loader=image_loader))
if name == "GOT10K_vottrain":
if settings.use_lmdb:
print("Building got10k from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='vottrain', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='vottrain', image_loader=image_loader))
if name == "GOT10K_train_full":
if settings.use_lmdb:
print("Building got10k_train_full from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='train_full', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='train_full', image_loader=image_loader))
if name == "GOT10K_votval":
if settings.use_lmdb:
print("Building got10k from lmdb")
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='votval', image_loader=image_loader))
else:
datasets.append(Got10k(settings.env.got10k_dir, split='votval', image_loader=image_loader))
if name == "GOT10K_official_val":
if settings.use_lmdb:
raise ValueError("Not implement")
else:
datasets.append(Got10k(settings.env.got10k_val_dir, split=None, image_loader=image_loader))
if name == "COCO17":
if settings.use_lmdb:
print("Building COCO2017 from lmdb")
datasets.append(MSCOCOSeq_lmdb(settings.env.coco_lmdb_dir, version="2017", image_loader=image_loader))
else:
datasets.append(MSCOCOSeq(settings.env.coco_dir, version="2017", image_loader=image_loader))
if name == "VID":
if settings.use_lmdb:
print("Building VID from lmdb")
datasets.append(ImagenetVID_lmdb(settings.env.imagenet_lmdb_dir, image_loader=image_loader))
else:
datasets.append(ImagenetVID(settings.env.imagenet_dir, image_loader=image_loader))
if name == "TRACKINGNET":
if settings.use_lmdb:
print("Building TrackingNet from lmdb")
datasets.append(TrackingNet_lmdb(settings.env.trackingnet_lmdb_dir, image_loader=image_loader))
else:
# raise ValueError("NOW WE CAN ONLY USE TRACKINGNET FROM LMDB")
datasets.append(TrackingNet(settings.env.trackingnet_dir, image_loader=image_loader))
return datasets
def build_dataloaders(cfg, settings):
# Data transform
transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05),
tfm.RandomHorizontalFlip(probability=0.5))
transform_train = tfm.Transform(tfm.ToTensorAndJitter(0.2),
tfm.RandomHorizontalFlip_Norm(probability=0.5),
tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))
transform_val = tfm.Transform(tfm.ToTensor(),
tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))
# The tracking pairs processing module
output_sz = settings.output_sz
search_area_factor = settings.search_area_factor
data_processing_train = processing.STARKProcessing(search_area_factor=search_area_factor,
output_sz=output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
mode='sequence',
transform=transform_train,
joint_transform=transform_joint,
settings=settings)
data_processing_val = processing.STARKProcessing(search_area_factor=search_area_factor,
output_sz=output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
mode='sequence',
transform=transform_val,
joint_transform=transform_joint,
settings=settings)
# Train sampler and loader
settings.num_template = getattr(cfg.DATA.TEMPLATE, "NUMBER", 1)
settings.num_search = getattr(cfg.DATA.SEARCH, "NUMBER", 1)
sampler_mode = getattr(cfg.DATA, "SAMPLER_MODE", "causal")
train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
print("sampler_mode", sampler_mode)
dataset_train = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.TRAIN.DATASETS_NAME, settings, opencv_loader),
p_datasets=cfg.DATA.TRAIN.DATASETS_RATIO,
samples_per_epoch=cfg.DATA.TRAIN.SAMPLE_PER_EPOCH,
max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
num_template_frames=settings.num_template, processing=data_processing_train,
frame_sample_mode=sampler_mode, train_cls=train_cls)
train_sampler = DistributedSampler(dataset_train) if settings.local_rank != -1 else None
shuffle = False if settings.local_rank != -1 else True
loader_train = LTRLoader('train', dataset_train, training=True, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=shuffle,
num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=train_sampler)
# Validation samplers and loaders
dataset_val = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.VAL.DATASETS_NAME, settings, opencv_loader),
p_datasets=cfg.DATA.VAL.DATASETS_RATIO,
samples_per_epoch=cfg.DATA.VAL.SAMPLE_PER_EPOCH,
max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
num_template_frames=settings.num_template, processing=data_processing_val,
frame_sample_mode=sampler_mode, train_cls=train_cls)
val_sampler = DistributedSampler(dataset_val) if settings.local_rank != -1 else None
loader_val = LTRLoader('val', dataset_val, training=False, batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=val_sampler,
epoch_interval=cfg.TRAIN.VAL_EPOCH_INTERVAL)
return loader_train, loader_val
def get_optimizer_scheduler(net, cfg):
train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
if train_cls:
print("Only training classification head. Learnable parameters are shown below.")
param_dicts = [
{"params": [p for n, p in net.named_parameters() if "cls" in n and p.requires_grad]}
]
for n, p in net.named_parameters():
if "cls" not in n:
p.requires_grad = False
else:
print(n)
else:
param_dicts = [
{"params": [p for n, p in net.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in net.named_parameters() if "backbone" in n and p.requires_grad],
"lr": cfg.TRAIN.LR * cfg.TRAIN.BACKBONE_MULTIPLIER,
},
]
if is_main_process():
print("Learnable parameters are shown below.")
for n, p in net.named_parameters():
if p.requires_grad:
print(n)
if cfg.TRAIN.OPTIMIZER == "ADAMW":
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.TRAIN.LR,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
else:
raise ValueError("Unsupported Optimizer")
if cfg.TRAIN.SCHEDULER.TYPE == 'step':
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.TRAIN.LR_DROP_EPOCH)
elif cfg.TRAIN.SCHEDULER.TYPE == "Mstep":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg.TRAIN.SCHEDULER.MILESTONES,
gamma=cfg.TRAIN.SCHEDULER.GAMMA)
else:
raise ValueError("Unsupported scheduler")
return optimizer, lr_scheduler