194 lines
11 KiB
Python
194 lines
11 KiB
Python
import torch
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
# datasets related
|
|
from lib.train.dataset import Lasot, Got10k, MSCOCOSeq, ImagenetVID, TrackingNet
|
|
from lib.train.dataset import Lasot_lmdb, Got10k_lmdb, MSCOCOSeq_lmdb, ImagenetVID_lmdb, TrackingNet_lmdb
|
|
from lib.train.data import sampler, opencv_loader, processing, LTRLoader
|
|
import lib.train.data.transforms as tfm
|
|
from lib.utils.misc import is_main_process
|
|
|
|
|
|
def update_settings(settings, cfg):
|
|
settings.print_interval = cfg.TRAIN.PRINT_INTERVAL
|
|
settings.search_area_factor = {'template': cfg.DATA.TEMPLATE.FACTOR,
|
|
'search': cfg.DATA.SEARCH.FACTOR}
|
|
settings.output_sz = {'template': cfg.DATA.TEMPLATE.SIZE,
|
|
'search': cfg.DATA.SEARCH.SIZE}
|
|
settings.center_jitter_factor = {'template': cfg.DATA.TEMPLATE.CENTER_JITTER,
|
|
'search': cfg.DATA.SEARCH.CENTER_JITTER}
|
|
settings.scale_jitter_factor = {'template': cfg.DATA.TEMPLATE.SCALE_JITTER,
|
|
'search': cfg.DATA.SEARCH.SCALE_JITTER}
|
|
settings.grad_clip_norm = cfg.TRAIN.GRAD_CLIP_NORM
|
|
settings.print_stats = None
|
|
settings.batchsize = cfg.TRAIN.BATCH_SIZE
|
|
settings.scheduler_type = cfg.TRAIN.SCHEDULER.TYPE
|
|
|
|
|
|
def names2datasets(name_list: list, settings, image_loader):
|
|
assert isinstance(name_list, list)
|
|
datasets = []
|
|
#settings.use_lmdb = True
|
|
for name in name_list:
|
|
assert name in ["LASOT", "GOT10K_vottrain", "GOT10K_votval", "GOT10K_train_full", "GOT10K_official_val",
|
|
"COCO17", "VID", "TRACKINGNET"]
|
|
if name == "LASOT":
|
|
if settings.use_lmdb:
|
|
print("Building lasot dataset from lmdb")
|
|
datasets.append(Lasot_lmdb(settings.env.lasot_lmdb_dir, split='train', image_loader=image_loader))
|
|
else:
|
|
datasets.append(Lasot(settings.env.lasot_dir, split='train', image_loader=image_loader))
|
|
if name == "GOT10K_vottrain":
|
|
if settings.use_lmdb:
|
|
print("Building got10k from lmdb")
|
|
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='vottrain', image_loader=image_loader))
|
|
else:
|
|
datasets.append(Got10k(settings.env.got10k_dir, split='vottrain', image_loader=image_loader))
|
|
if name == "GOT10K_train_full":
|
|
if settings.use_lmdb:
|
|
print("Building got10k_train_full from lmdb")
|
|
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='train_full', image_loader=image_loader))
|
|
else:
|
|
datasets.append(Got10k(settings.env.got10k_dir, split='train_full', image_loader=image_loader))
|
|
if name == "GOT10K_votval":
|
|
if settings.use_lmdb:
|
|
print("Building got10k from lmdb")
|
|
datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='votval', image_loader=image_loader))
|
|
else:
|
|
datasets.append(Got10k(settings.env.got10k_dir, split='votval', image_loader=image_loader))
|
|
if name == "GOT10K_official_val":
|
|
if settings.use_lmdb:
|
|
raise ValueError("Not implement")
|
|
else:
|
|
datasets.append(Got10k(settings.env.got10k_val_dir, split=None, image_loader=image_loader))
|
|
if name == "COCO17":
|
|
if settings.use_lmdb:
|
|
print("Building COCO2017 from lmdb")
|
|
datasets.append(MSCOCOSeq_lmdb(settings.env.coco_lmdb_dir, version="2017", image_loader=image_loader))
|
|
else:
|
|
datasets.append(MSCOCOSeq(settings.env.coco_dir, version="2017", image_loader=image_loader))
|
|
if name == "VID":
|
|
if settings.use_lmdb:
|
|
print("Building VID from lmdb")
|
|
datasets.append(ImagenetVID_lmdb(settings.env.imagenet_lmdb_dir, image_loader=image_loader))
|
|
else:
|
|
datasets.append(ImagenetVID(settings.env.imagenet_dir, image_loader=image_loader))
|
|
if name == "TRACKINGNET":
|
|
if settings.use_lmdb:
|
|
print("Building TrackingNet from lmdb")
|
|
datasets.append(TrackingNet_lmdb(settings.env.trackingnet_lmdb_dir, image_loader=image_loader))
|
|
else:
|
|
# raise ValueError("NOW WE CAN ONLY USE TRACKINGNET FROM LMDB")
|
|
datasets.append(TrackingNet(settings.env.trackingnet_dir, image_loader=image_loader))
|
|
return datasets
|
|
|
|
|
|
def build_dataloaders(cfg, settings):
|
|
# Data transform
|
|
transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05),
|
|
tfm.RandomHorizontalFlip(probability=0.5))
|
|
|
|
transform_train = tfm.Transform(tfm.ToTensorAndJitter(0.2),
|
|
tfm.RandomHorizontalFlip_Norm(probability=0.5),
|
|
tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))
|
|
|
|
transform_val = tfm.Transform(tfm.ToTensor(),
|
|
tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))
|
|
|
|
# The tracking pairs processing module
|
|
output_sz = settings.output_sz
|
|
search_area_factor = settings.search_area_factor
|
|
|
|
data_processing_train = processing.STARKProcessing(search_area_factor=search_area_factor,
|
|
output_sz=output_sz,
|
|
center_jitter_factor=settings.center_jitter_factor,
|
|
scale_jitter_factor=settings.scale_jitter_factor,
|
|
mode='sequence',
|
|
transform=transform_train,
|
|
joint_transform=transform_joint,
|
|
settings=settings)
|
|
|
|
data_processing_val = processing.STARKProcessing(search_area_factor=search_area_factor,
|
|
output_sz=output_sz,
|
|
center_jitter_factor=settings.center_jitter_factor,
|
|
scale_jitter_factor=settings.scale_jitter_factor,
|
|
mode='sequence',
|
|
transform=transform_val,
|
|
joint_transform=transform_joint,
|
|
settings=settings)
|
|
|
|
# Train sampler and loader
|
|
settings.num_template = getattr(cfg.DATA.TEMPLATE, "NUMBER", 1)
|
|
settings.num_search = getattr(cfg.DATA.SEARCH, "NUMBER", 1)
|
|
sampler_mode = getattr(cfg.DATA, "SAMPLER_MODE", "causal")
|
|
train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
|
|
print("sampler_mode", sampler_mode)
|
|
dataset_train = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.TRAIN.DATASETS_NAME, settings, opencv_loader),
|
|
p_datasets=cfg.DATA.TRAIN.DATASETS_RATIO,
|
|
samples_per_epoch=cfg.DATA.TRAIN.SAMPLE_PER_EPOCH,
|
|
max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
|
|
num_template_frames=settings.num_template, processing=data_processing_train,
|
|
frame_sample_mode=sampler_mode, train_cls=train_cls)
|
|
|
|
train_sampler = DistributedSampler(dataset_train) if settings.local_rank != -1 else None
|
|
shuffle = False if settings.local_rank != -1 else True
|
|
|
|
loader_train = LTRLoader('train', dataset_train, training=True, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=shuffle,
|
|
num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=train_sampler)
|
|
|
|
# Validation samplers and loaders
|
|
dataset_val = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.VAL.DATASETS_NAME, settings, opencv_loader),
|
|
p_datasets=cfg.DATA.VAL.DATASETS_RATIO,
|
|
samples_per_epoch=cfg.DATA.VAL.SAMPLE_PER_EPOCH,
|
|
max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
|
|
num_template_frames=settings.num_template, processing=data_processing_val,
|
|
frame_sample_mode=sampler_mode, train_cls=train_cls)
|
|
val_sampler = DistributedSampler(dataset_val) if settings.local_rank != -1 else None
|
|
loader_val = LTRLoader('val', dataset_val, training=False, batch_size=cfg.TRAIN.BATCH_SIZE,
|
|
num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=val_sampler,
|
|
epoch_interval=cfg.TRAIN.VAL_EPOCH_INTERVAL)
|
|
|
|
return loader_train, loader_val
|
|
|
|
|
|
def get_optimizer_scheduler(net, cfg):
|
|
train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
|
|
if train_cls:
|
|
print("Only training classification head. Learnable parameters are shown below.")
|
|
param_dicts = [
|
|
{"params": [p for n, p in net.named_parameters() if "cls" in n and p.requires_grad]}
|
|
]
|
|
|
|
for n, p in net.named_parameters():
|
|
if "cls" not in n:
|
|
p.requires_grad = False
|
|
else:
|
|
print(n)
|
|
else:
|
|
param_dicts = [
|
|
{"params": [p for n, p in net.named_parameters() if "backbone" not in n and p.requires_grad]},
|
|
{
|
|
"params": [p for n, p in net.named_parameters() if "backbone" in n and p.requires_grad],
|
|
"lr": cfg.TRAIN.LR * cfg.TRAIN.BACKBONE_MULTIPLIER,
|
|
},
|
|
]
|
|
if is_main_process():
|
|
print("Learnable parameters are shown below.")
|
|
for n, p in net.named_parameters():
|
|
if p.requires_grad:
|
|
print(n)
|
|
|
|
if cfg.TRAIN.OPTIMIZER == "ADAMW":
|
|
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.TRAIN.LR,
|
|
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
|
|
else:
|
|
raise ValueError("Unsupported Optimizer")
|
|
if cfg.TRAIN.SCHEDULER.TYPE == 'step':
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.TRAIN.LR_DROP_EPOCH)
|
|
elif cfg.TRAIN.SCHEDULER.TYPE == "Mstep":
|
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
|
|
milestones=cfg.TRAIN.SCHEDULER.MILESTONES,
|
|
gamma=cfg.TRAIN.SCHEDULER.GAMMA)
|
|
else:
|
|
raise ValueError("Unsupported scheduler")
|
|
return optimizer, lr_scheduler
|