188 lines
6.1 KiB
Python
188 lines
6.1 KiB
Python
import argparse
|
|
import os
|
|
import cv2
|
|
import json
|
|
import torch
|
|
import numpy as np
|
|
import supervision as sv
|
|
import pycocotools.mask as mask_util
|
|
from pathlib import Path
|
|
from supervision.draw.color import ColorPalette
|
|
from utils.supervision_utils import CUSTOM_COLOR_MAP
|
|
from PIL import Image
|
|
from sam2.build_sam import build_sam2
|
|
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
|
|
|
"""
|
|
Hyper parameters
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--grounding-model', default="IDEA-Research/grounding-dino-tiny")
|
|
parser.add_argument("--text-prompt", default="car. tire.")
|
|
parser.add_argument("--img-path", default="notebooks/images/truck.jpg")
|
|
parser.add_argument("--sam2-checkpoint", default="./checkpoints/sam2.1_hiera_large.pt")
|
|
parser.add_argument("--sam2-model-config", default="configs/sam2.1/sam2.1_hiera_l.yaml")
|
|
parser.add_argument("--output-dir", default="outputs/grounded_sam2_hf_demo")
|
|
parser.add_argument("--no-dump-json", action="store_true")
|
|
parser.add_argument("--force-cpu", action="store_true")
|
|
args = parser.parse_args()
|
|
|
|
GROUNDING_MODEL = args.grounding_model
|
|
TEXT_PROMPT = args.text_prompt
|
|
IMG_PATH = args.img_path
|
|
SAM2_CHECKPOINT = args.sam2_checkpoint
|
|
SAM2_MODEL_CONFIG = args.sam2_model_config
|
|
DEVICE = "cuda" if torch.cuda.is_available() and not args.force_cpu else "cpu"
|
|
OUTPUT_DIR = Path(args.output_dir)
|
|
DUMP_JSON_RESULTS = not args.no_dump_json
|
|
|
|
# create output directory
|
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
# environment settings
|
|
# use bfloat16
|
|
torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
|
|
|
|
if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
|
|
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
# build SAM2 image predictor
|
|
sam2_checkpoint = SAM2_CHECKPOINT
|
|
model_cfg = SAM2_MODEL_CONFIG
|
|
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
|
|
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
|
|
|
# build grounding dino from huggingface
|
|
model_id = GROUNDING_MODEL
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(DEVICE)
|
|
|
|
|
|
# setup the input image and text prompt for SAM 2 and Grounding DINO
|
|
# VERY important: text queries need to be lowercased + end with a dot
|
|
text = TEXT_PROMPT
|
|
img_path = IMG_PATH
|
|
|
|
image = Image.open(img_path)
|
|
|
|
sam2_predictor.set_image(np.array(image.convert("RGB")))
|
|
|
|
inputs = processor(images=image, text=text, return_tensors="pt").to(DEVICE)
|
|
with torch.no_grad():
|
|
outputs = grounding_model(**inputs)
|
|
|
|
results = processor.post_process_grounded_object_detection(
|
|
outputs,
|
|
inputs.input_ids,
|
|
box_threshold=0.4,
|
|
text_threshold=0.3,
|
|
target_sizes=[image.size[::-1]]
|
|
)
|
|
|
|
"""
|
|
Results is a list of dict with the following structure:
|
|
[
|
|
{
|
|
'scores': tensor([0.7969, 0.6469, 0.6002, 0.4220], device='cuda:0'),
|
|
'labels': ['car', 'tire', 'tire', 'tire'],
|
|
'boxes': tensor([[ 89.3244, 278.6940, 1710.3505, 851.5143],
|
|
[1392.4701, 554.4064, 1628.6133, 777.5872],
|
|
[ 436.1182, 621.8940, 676.5255, 851.6897],
|
|
[1236.0990, 688.3547, 1400.2427, 753.1256]], device='cuda:0')
|
|
}
|
|
]
|
|
"""
|
|
|
|
# get the box prompt for SAM 2
|
|
input_boxes = results[0]["boxes"].cpu().numpy()
|
|
|
|
masks, scores, logits = sam2_predictor.predict(
|
|
point_coords=None,
|
|
point_labels=None,
|
|
box=input_boxes,
|
|
multimask_output=False,
|
|
)
|
|
|
|
|
|
"""
|
|
Post-process the output of the model to get the masks, scores, and logits for visualization
|
|
"""
|
|
# convert the shape to (n, H, W)
|
|
if masks.ndim == 4:
|
|
masks = masks.squeeze(1)
|
|
|
|
|
|
confidences = results[0]["scores"].cpu().numpy().tolist()
|
|
class_names = results[0]["labels"]
|
|
class_ids = np.array(list(range(len(class_names))))
|
|
|
|
labels = [
|
|
f"{class_name} {confidence:.2f}"
|
|
for class_name, confidence
|
|
in zip(class_names, confidences)
|
|
]
|
|
|
|
"""
|
|
Visualize image with supervision useful API
|
|
"""
|
|
img = cv2.imread(img_path)
|
|
detections = sv.Detections(
|
|
xyxy=input_boxes, # (n, 4)
|
|
mask=masks.astype(bool), # (n, h, w)
|
|
class_id=class_ids
|
|
)
|
|
|
|
"""
|
|
Note that if you want to use default color map,
|
|
you can set color=ColorPalette.DEFAULT
|
|
"""
|
|
box_annotator = sv.BoxAnnotator(color=ColorPalette.from_hex(CUSTOM_COLOR_MAP))
|
|
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
|
|
|
|
label_annotator = sv.LabelAnnotator(color=ColorPalette.from_hex(CUSTOM_COLOR_MAP))
|
|
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
|
cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
|
|
|
|
mask_annotator = sv.MaskAnnotator(color=ColorPalette.from_hex(CUSTOM_COLOR_MAP))
|
|
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
|
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
|
|
|
|
|
|
"""
|
|
Dump the results in standard format and save as json files
|
|
"""
|
|
|
|
def single_mask_to_rle(mask):
|
|
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
|
|
rle["counts"] = rle["counts"].decode("utf-8")
|
|
return rle
|
|
|
|
if DUMP_JSON_RESULTS:
|
|
# convert mask into rle format
|
|
mask_rles = [single_mask_to_rle(mask) for mask in masks]
|
|
|
|
input_boxes = input_boxes.tolist()
|
|
scores = scores.tolist()
|
|
# save the results in standard format
|
|
results = {
|
|
"image_path": img_path,
|
|
"annotations" : [
|
|
{
|
|
"class_name": class_name,
|
|
"bbox": box,
|
|
"segmentation": mask_rle,
|
|
"score": score,
|
|
}
|
|
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
|
|
],
|
|
"box_format": "xyxy",
|
|
"img_width": image.width,
|
|
"img_height": image.height,
|
|
}
|
|
|
|
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_hf_model_demo_results.json"), "w") as f:
|
|
json.dump(results, f, indent=4)
|