
This PR provides new features and updates for SAM 2: - We now support `torch.compile` of the entire SAM 2 model on videos, which can be turned on by setting `vos_optimized=True` in `build_sam2_video_predictor` (it uses the new `SAM2VideoPredictorVOS` predictor class in `sam2/sam2_video_predictor.py`). * Compared to the previous setting (which only compiles the image encoder backbone), the new full model compilation gives a major speedup in inference FPS. * In the VOS prediction script `tools/vos_inference.py`, you can specify this option in `tools/vos_inference.py` via the `--use_vos_optimized_video_predictor` flag. * Note that turning on this flag might introduce a small variance in the predictions due to numerical differences caused by `torch.compile` of the full model. * **PyTorch 2.5.1 is the minimum version for full support of this feature**. (Earlier PyTorch versions might run into compilation errors in some cases.) Therefore, we have updated the minimum PyTorch version to 2.5.1 accordingly in the installation scripts. - We also update the implementation of the `SAM2VideoPredictor` class for the SAM 2 video prediction in `sam2/sam2_video_predictor.py`, which allows for independent per-object inference. Specifically, in the new `SAM2VideoPredictor`: * Now **we handle the inference of each object independently** (as if we are opening a separate session for each object) while sharing their backbone features. * This change allows us to relax the assumption of prompting for multi-object tracking. Previously (due to the batching behavior in inference), if a video frame receives clicks for only a subset of objects, the rest of the (non-prompted) objects are assumed to be non-existent in this frame (i.e., in such frames, the user is telling SAM 2 that the rest of the objects don't appear). Now, if a frame receives clicks for only a subset of objects, we do not make any assumptions about the remaining (non-prompted) objects (i.e., now each object is handled independently and is not affected by how other objects are prompted). As a result, **we allow adding new objects after tracking starts** after this change (which was previously a restriction on usage). * We believe that the new version is a more natural inference behavior and therefore switched to it as the default behavior. The previous implementation of `SAM2VideoPredictor` is backed up to in `sam2/sam2_video_predictor_legacy.py`. All the VOS inference results using `tools/vos_inference.py` should remain the same after this change to the `SAM2VideoPredictor` class.
SAM 2 toolkits
This directory provides toolkits for additional SAM 2 use cases.
Semi-supervised VOS inference
The vos_inference.py
script can be used to generate predictions for semi-supervised video object segmentation (VOS) evaluation on datasets such as DAVIS, MOSE or the SA-V dataset.
After installing SAM 2 and its dependencies, it can be used as follows (DAVIS 2017 dataset as an example). This script saves the prediction PNG files to the --output_mask_dir
.
python ./tools/vos_inference.py \
--sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \
--sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \
--base_video_dir /path-to-davis-2017/JPEGImages/480p \
--input_mask_dir /path-to-davis-2017/Annotations/480p \
--video_list_file /path-to-davis-2017/ImageSets/2017/val.txt \
--output_mask_dir ./outputs/davis_2017_pred_pngs
(replace /path-to-davis-2017
with the path to DAVIS 2017 dataset)
To evaluate on the SA-V dataset with per-object PNG files for the object masks, we need to add the --per_obj_png_file
flag as follows (using SA-V val as an example). This script will also save per-object PNG files for the output masks under the --per_obj_png_file
flag.
python ./tools/vos_inference.py \
--sam2_cfg configs/sam2.1/sam2.1_hiera_b+.yaml \
--sam2_checkpoint ./checkpoints/sam2.1_hiera_base_plus.pt \
--base_video_dir /path-to-sav-val/JPEGImages_24fps \
--input_mask_dir /path-to-sav-val/Annotations_6fps \
--video_list_file /path-to-sav-val/sav_val.txt \
--per_obj_png_file \
--output_mask_dir ./outputs/sav_val_pred_pngs
(replace /path-to-sav-val
with the path to SA-V val)
Then, we can use the evaluation tools or servers for each dataset to get the performance of the prediction PNG files above.
Note: by default, the vos_inference.py
script above assumes that all objects to track already appear on frame 0 in each video (as is the case in DAVIS, MOSE or SA-V). For VOS datasets that don't have all objects to track appearing in the first frame (such as LVOS or YouTube-VOS), please add the --track_object_appearing_later_in_video
flag when using vos_inference.py
.