import torch import os import os.path import numpy as np import pandas import random from collections import OrderedDict from lib.train.data import jpeg4py_loader from .base_video_dataset import BaseVideoDataset from lib.train.admin import env_settings def list_sequences(root, set_ids): """ Lists all the videos in the input set_ids. Returns a list of tuples (set_id, video_name) args: root: Root directory to TrackingNet set_ids: Sets (0-11) which are to be used returns: list - list of tuples (set_id, video_name) containing the set_id and video_name for each sequence """ sequence_list = [] for s in set_ids: anno_dir = os.path.join(root, "TRAIN_" + str(s), "anno") sequences_cur_set = [(s, os.path.splitext(f)[0]) for f in os.listdir(anno_dir) if f.endswith('.txt')] sequence_list += sequences_cur_set return sequence_list class TrackingNet(BaseVideoDataset): """ TrackingNet dataset. Publication: TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild. Matthias Mueller,Adel Bibi, Silvio Giancola, Salman Al-Subaihi and Bernard Ghanem ECCV, 2018 https://ivul.kaust.edu.sa/Documents/Publications/2018/TrackingNet%20A%20Large%20Scale%20Dataset%20and%20Benchmark%20for%20Object%20Tracking%20in%20the%20Wild.pdf Download the dataset using the toolkit https://github.com/SilvioGiancola/TrackingNet-devkit. """ def __init__(self, root=None, image_loader=jpeg4py_loader, set_ids=None, data_fraction=None): """ args: root - The path to the TrackingNet folder, containing the training sets. image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py) is used by default. set_ids (None) - List containing the ids of the TrackingNet sets to be used for training. If None, all the sets (0 - 11) will be used. data_fraction - Fraction of dataset to be used. The complete dataset is used by default """ root = env_settings().trackingnet_dir if root is None else root super().__init__('TrackingNet', root, image_loader) if set_ids is None: set_ids = [i for i in range(12)] self.set_ids = set_ids # Keep a list of all videos. Sequence list is a list of tuples (set_id, video_name) containing the set_id and # video_name for each sequence self.sequence_list = list_sequences(self.root, self.set_ids) if data_fraction is not None: self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list) * data_fraction)) self.seq_to_class_map, self.seq_per_class = self._load_class_info() # we do not have the class_lists for the tracking net self.class_list = list(self.seq_per_class.keys()) self.class_list.sort() def _load_class_info(self): ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') class_map_path = os.path.join(ltr_path, 'data_specs', 'trackingnet_classmap.txt') with open(class_map_path, 'r') as f: seq_to_class_map = {seq_class.split('\t')[0]: seq_class.rstrip().split('\t')[1] for seq_class in f} seq_per_class = {} for i, seq in enumerate(self.sequence_list): class_name = seq_to_class_map.get(seq[1], 'Unknown') if class_name not in seq_per_class: seq_per_class[class_name] = [i] else: seq_per_class[class_name].append(i) return seq_to_class_map, seq_per_class def get_name(self): return 'trackingnet' def has_class_info(self): return True def get_sequences_in_class(self, class_name): return self.seq_per_class[class_name] def _read_bb_anno(self, seq_id): set_id = self.sequence_list[seq_id][0] vid_name = self.sequence_list[seq_id][1] bb_anno_file = os.path.join(self.root, "TRAIN_" + str(set_id), "anno", vid_name + ".txt") gt = pandas.read_csv(bb_anno_file, delimiter=',', header=None, dtype=np.float32, na_filter=False, low_memory=False).values return torch.tensor(gt) def get_sequence_info(self, seq_id): bbox = self._read_bb_anno(seq_id) valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0) visible = valid.clone().byte() return {'bbox': bbox, 'valid': valid, 'visible': visible} def _get_frame(self, seq_id, frame_id): set_id = self.sequence_list[seq_id][0] vid_name = self.sequence_list[seq_id][1] frame_path = os.path.join(self.root, "TRAIN_" + str(set_id), "frames", vid_name, str(frame_id) + ".jpg") return self.image_loader(frame_path) def _get_class(self, seq_id): seq_name = self.sequence_list[seq_id][1] return self.seq_to_class_map[seq_name] def get_class_name(self, seq_id): obj_class = self._get_class(seq_id) return obj_class def get_frames(self, seq_id, frame_ids, anno=None): frame_list = [self._get_frame(seq_id, f) for f in frame_ids] if anno is None: anno = self.get_sequence_info(seq_id) anno_frames = {} for key, value in anno.items(): anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids] obj_class = self._get_class(seq_id) object_meta = OrderedDict({'object_class_name': obj_class, 'motion_class': None, 'major_class': None, 'root_class': None, 'motion_adverb': None}) return frame_list, anno_frames, object_meta