import os import os.path import numpy as np import torch import csv import pandas import random from collections import OrderedDict from .base_video_dataset import BaseVideoDataset from lib.train.data import jpeg4py_loader from lib.train.admin import env_settings class Got10k(BaseVideoDataset): """ GOT-10k dataset. Publication: GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild Lianghua Huang, Xin Zhao, and Kaiqi Huang arXiv:1810.11981, 2018 https://arxiv.org/pdf/1810.11981.pdf Download dataset from http://got-10k.aitestunion.com/downloads """ def __init__(self, root=None, image_loader=jpeg4py_loader, split=None, seq_ids=None, data_fraction=None): """ args: root - path to the got-10k training data. Note: This should point to the 'train' folder inside GOT-10k image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py) is used by default. split - 'train' or 'val'. Note: The validation split here is a subset of the official got-10k train split, not NOT the official got-10k validation split. To use the official validation split, provide that as the root folder instead. seq_ids - List containing the ids of the videos to be used for training. Note: Only one of 'split' or 'seq_ids' options can be used at the same time. data_fraction - Fraction of dataset to be used. The complete dataset is used by default """ root = env_settings().got10k_dir if root is None else root super().__init__('GOT10k', root, image_loader) # all folders inside the root self.sequence_list = self._get_sequence_list() # seq_id is the index of the folder inside the got10k root path if split is not None: if seq_ids is not None: raise ValueError('Cannot set both split_name and seq_ids.') ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') if split == 'train': file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_split.txt') elif split == 'val': file_path = os.path.join(ltr_path, 'data_specs', 'got10k_val_split.txt') elif split == 'train_full': file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_full_split.txt') elif split == 'vottrain': file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_train_split.txt') elif split == 'votval': file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_val_split.txt') else: raise ValueError('Unknown split name.') # seq_ids = pandas.read_csv(file_path, header=None, squeeze=True, dtype=np.int64).values.tolist() seq_ids = pandas.read_csv(file_path, header=None, dtype=np.int64).squeeze("columns").values.tolist() elif seq_ids is None: seq_ids = list(range(0, len(self.sequence_list))) self.sequence_list = [self.sequence_list[i] for i in seq_ids] if data_fraction is not None: self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction)) self.sequence_meta_info = self._load_meta_info() self.seq_per_class = self._build_seq_per_class() self.class_list = list(self.seq_per_class.keys()) self.class_list.sort() def get_name(self): return 'got10k' def has_class_info(self): return True def has_occlusion_info(self): return True def _load_meta_info(self): sequence_meta_info = {s: self._read_meta(os.path.join(self.root, s)) for s in self.sequence_list} return sequence_meta_info def _read_meta(self, seq_path): try: with open(os.path.join(seq_path, 'meta_info.ini')) as f: meta_info = f.readlines() object_meta = OrderedDict({'object_class_name': meta_info[5].split(': ')[-1][:-1], 'motion_class': meta_info[6].split(': ')[-1][:-1], 'major_class': meta_info[7].split(': ')[-1][:-1], 'root_class': meta_info[8].split(': ')[-1][:-1], 'motion_adverb': meta_info[9].split(': ')[-1][:-1]}) except: object_meta = OrderedDict({'object_class_name': None, 'motion_class': None, 'major_class': None, 'root_class': None, 'motion_adverb': None}) return object_meta def _build_seq_per_class(self): seq_per_class = {} for i, s in enumerate(self.sequence_list): object_class = self.sequence_meta_info[s]['object_class_name'] if object_class in seq_per_class: seq_per_class[object_class].append(i) else: seq_per_class[object_class] = [i] return seq_per_class def get_sequences_in_class(self, class_name): return self.seq_per_class[class_name] def _get_sequence_list(self): with open(os.path.join(self.root, 'list.txt')) as f: dir_list = list(csv.reader(f)) dir_list = [dir_name[0] for dir_name in dir_list] return dir_list def _read_bb_anno(self, seq_path): bb_anno_file = os.path.join(seq_path, "groundtruth.txt") gt = pandas.read_csv(bb_anno_file, delimiter=',', header=None, dtype=np.float32, na_filter=False, low_memory=False).values return torch.tensor(gt) def _read_target_visible(self, seq_path): # Read full occlusion and out_of_view occlusion_file = os.path.join(seq_path, "absence.label") cover_file = os.path.join(seq_path, "cover.label") with open(occlusion_file, 'r', newline='') as f: occlusion = torch.ByteTensor([int(v[0]) for v in csv.reader(f)]) with open(cover_file, 'r', newline='') as f: cover = torch.ByteTensor([int(v[0]) for v in csv.reader(f)]) target_visible = ~occlusion & (cover>0).byte() visible_ratio = cover.float() / 8 return target_visible, visible_ratio def _get_sequence_path(self, seq_id): return os.path.join(self.root, self.sequence_list[seq_id]) def get_sequence_info(self, seq_id): seq_path = self._get_sequence_path(seq_id) bbox = self._read_bb_anno(seq_path) valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0) visible, visible_ratio = self._read_target_visible(seq_path) visible = visible & valid.byte() return {'bbox': bbox, 'valid': valid, 'visible': visible, 'visible_ratio': visible_ratio} def _get_frame_path(self, seq_path, frame_id): return os.path.join(seq_path, '{:08}.jpg'.format(frame_id+1)) # frames start from 1 def _get_frame(self, seq_path, frame_id): return self.image_loader(self._get_frame_path(seq_path, frame_id)) def get_class_name(self, seq_id): obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]] return obj_meta['object_class_name'] def get_frames(self, seq_id, frame_ids, anno=None): seq_path = self._get_sequence_path(seq_id) obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]] frame_list = [self._get_frame(seq_path, f_id) for f_id in frame_ids] if anno is None: anno = self.get_sequence_info(seq_id) anno_frames = {} for key, value in anno.items(): anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids] return frame_list, anno_frames, obj_meta