import numpy as np from lib.test.evaluation.data import Sequence, BaseDataset, SequenceList from lib.test.utils.load_text import load_text import os class GOT10KDataset(BaseDataset): """ GOT-10k dataset. Publication: GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild Lianghua Huang, Xin Zhao, and Kaiqi Huang arXiv:1810.11981, 2018 https://arxiv.org/pdf/1810.11981.pdf Download dataset from http://got-10k.aitestunion.com/downloads """ def __init__(self, split): super().__init__() # Split can be test, val, or ltrval (a validation split consisting of videos from the official train set) if split == 'test' or split == 'val': self.base_path = os.path.join(self.env_settings.got10k_path, split) else: self.base_path = os.path.join(self.env_settings.got10k_path, 'train') self.sequence_list = self._get_sequence_list(split) self.split = split def get_sequence_list(self): return SequenceList([self._construct_sequence(s) for s in self.sequence_list]) def _construct_sequence(self, sequence_name): anno_path = '{}/{}/groundtruth.txt'.format(self.base_path, sequence_name) ground_truth_rect = load_text(str(anno_path), delimiter=',', dtype=np.float64) frames_path = '{}/{}'.format(self.base_path, sequence_name) frame_list = [frame for frame in os.listdir(frames_path) if frame.endswith(".jpg")] frame_list.sort(key=lambda f: int(f[:-4])) frames_list = [os.path.join(frames_path, frame) for frame in frame_list] return Sequence(sequence_name, frames_list, 'got10k', ground_truth_rect.reshape(-1, 4)) def __len__(self): return len(self.sequence_list) def _get_sequence_list(self, split): with open('{}/list.txt'.format(self.base_path)) as f: sequence_list = f.read().splitlines() if split == 'ltrval': with open('{}/got10k_val_split.txt'.format(self.env_settings.dataspec_path)) as f: seq_ids = f.read().splitlines() sequence_list = [sequence_list[int(x)] for x in seq_ids] return sequence_list