class StatValue: def __init__(self): self.clear() def reset(self): self.val = 0 def clear(self): self.reset() self.history = [] def update(self, val): self.val = val self.history.append(self.val) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.clear() self.has_new_data = False def reset(self): self.avg = 0 self.val = 0 self.sum = 0 self.count = 0 def clear(self): self.reset() self.history = [] def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def new_epoch(self): if self.count > 0: self.history.append(self.avg) self.reset() self.has_new_data = True else: self.has_new_data = False def topk_accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" single_input = not isinstance(topk, (tuple, list)) if single_input: topk = (topk,) maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)[0] res.append(correct_k * 100.0 / batch_size) if single_input: return res[0] return res