Compare commits

2 Commits

Author SHA1 Message Date
kiennt
33303aa62f feat: Update setup for project 2025-08-14 09:27:02 +00:00
kiennt
34b17b0280 feat : Update code, new args 2025-08-14 09:26:37 +00:00
10 changed files with 4470 additions and 14 deletions

4
.gitignore vendored
View File

@@ -144,4 +144,6 @@ dmypy.json
*.pth *.pth
outputs/ outputs/
.idea/ .idea/
tmp/
data/

View File

@@ -16,7 +16,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.layers import DropPath, to_2tuple, trunc_normal_
from grounding_dino.groundingdino.util.misc import NestedTensor from grounding_dino.groundingdino.util.misc import NestedTensor
@@ -113,7 +113,7 @@ class WindowAttention(nn.Module):
# get pair-wise relative position index for each token inside the window # get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0]) coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1]) coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2

View File

@@ -8,7 +8,7 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from timm.models.layers import DropPath from timm.layers import DropPath
class FeatureResizer(nn.Module): class FeatureResizer(nn.Module):

View File

@@ -470,6 +470,7 @@ class TransformerEncoder(nn.Module):
ref_y, ref_x = torch.meshgrid( ref_y, ref_x = torch.meshgrid(
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
indexing="ij"
) )
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
@@ -859,7 +860,7 @@ class DeformableTransformerDecoderLayer(nn.Module):
return tensor if pos is None else tensor + pos return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt): def forward_ffn(self, tgt):
with torch.cuda.amp.autocast(enabled=False): with torch.amp.autocast("cuda", enabled=False):
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2) tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt) tgt = self.norm3(tgt)

View File

@@ -79,6 +79,7 @@ def gen_encoder_output_proposals(
grid_y, grid_x = torch.meshgrid( grid_y, grid_x = torch.meshgrid(
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
indexing="ij"
) )
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2

View File

@@ -118,7 +118,7 @@ def masks_to_boxes(masks):
y = torch.arange(0, h, dtype=torch.float) y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x) y, x = torch.meshgrid(y, x, indexing="ij")
x_mask = masks * x.unsqueeze(0) x_mask = masks * x.unsqueeze(0)
x_max = x_mask.flatten(1).max(-1)[0] x_max = x_mask.flatten(1).max(-1)[0]

View File

@@ -63,6 +63,7 @@ def predict(
model = model.to(device) model = model.to(device)
image = image.to(device) image = image.to(device)
model.eval()
with torch.no_grad(): with torch.no_grad():
outputs = model(image[None], captions=[caption]) outputs = model(image[None], captions=[caption])
@@ -76,10 +77,10 @@ def predict(
tokenizer = model.tokenizer tokenizer = model.tokenizer
tokenized = tokenizer(caption) tokenized = tokenizer(caption)
if remove_combined: if remove_combined:
sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]] sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
phrases = [] phrases = []
for logit in logits: for logit in logits:
max_idx = logit.argmax() max_idx = logit.argmax()

View File

@@ -1,6 +1,68 @@
[build-system] [build-system]
requires = [ requires = ["setuptools>=61.0", "wheel"]
"setuptools>=62.3.0,<75.9",
"torch>=2.3.1",
]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"
[project]
name = "Grounded-SAM-2"
version = "1.0"
description = "Grounded SAM 2: Ground and Track Anything in Videos"
readme = "README.md"
requires-python = ">=3.10.0"
license = { text = "Apache 2.0" }
authors = [{ name = "Meta AI", email = "segment-anything@meta.com" }]
keywords = ["segmentation", "computer vision", "deep learning"]
dependencies = [
"torch>=2.3.1",
"torchvision>=0.18.1",
"numpy>=1.24.4",
"tqdm>=4.66.1",
"hydra-core>=1.3.2",
"iopath>=0.1.10",
"pillow>=9.4.0",
"opencv-python-headless>=4.11.0.86",
"supervision>=0.26.1",
"pycocotools>=2.0.10",
"transformers>=4.55.1",
"addict>=2.4.0",
"yapf>=0.43.0",
"timm>=1.0.19",
"pdf2image>=1.17.0",
]
[project.optional-dependencies]
notebooks = [
"matplotlib>=3.9.1",
"jupyter>=1.0.0",
"opencv-python>=4.7.0",
"eva-decord>=0.6.1",
]
interactive-demo = [
"Flask>=3.0.3",
"Flask-Cors>=5.0.0",
"av>=13.0.0",
"dataclasses-json>=0.6.7",
"eva-decord>=0.6.1",
"gunicorn>=23.0.0",
"imagesize>=1.4.1",
"pycocotools>=2.0.8",
"strawberry-graphql>=0.243.0",
]
dev = [
"black==24.2.0",
"usort==1.0.2",
"ufmt==2.0.0b2",
"fvcore>=0.1.5.post20221221",
"pandas>=2.2.2",
"scikit-image>=0.24.0",
"tensorboard>=2.17.0",
"pycocotools>=2.0.8",
"tensordict>=0.5.0",
"opencv-python>=4.7.0",
"submitit>=1.5.1",
]
[tool.setuptools]
# extensions = [{ name = "sam2._C", sources = ["sam2/csrc/connected_components.cu"] }]
packages = ["sam2", "grounding_dino"]

View File

@@ -623,7 +623,7 @@ class Trainer:
# compute output # compute output
with torch.no_grad(): with torch.no_grad():
with torch.cuda.amp.autocast( with torch.amp.autocast("cuda",
enabled=(self.optim_conf.amp.enabled if self.optim_conf else False), enabled=(self.optim_conf.amp.enabled if self.optim_conf else False),
dtype=( dtype=(
get_amp_type(self.optim_conf.amp.amp_dtype) get_amp_type(self.optim_conf.amp.amp_dtype)
@@ -858,7 +858,8 @@ class Trainer:
# grads will also update a model even if the step doesn't produce # grads will also update a model even if the step doesn't produce
# gradients # gradients
self.optim.zero_grad(set_to_none=True) self.optim.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast( with torch.amp.autocast(
"cuda",
enabled=self.optim_conf.amp.enabled, enabled=self.optim_conf.amp.enabled,
dtype=get_amp_type(self.optim_conf.amp.amp_dtype), dtype=get_amp_type(self.optim_conf.amp.amp_dtype),
): ):

4388
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff