Move HF to separate section
This commit is contained in:
36
README.md
36
README.md
@@ -72,19 +72,6 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|||||||
masks, _, _ = predictor.predict(<input_prompts>)
|
masks, _, _ = predictor.predict(<input_prompts>)
|
||||||
```
|
```
|
||||||
|
|
||||||
or from Hugging Face, as follows:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import torch
|
|
||||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
||||||
|
|
||||||
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
|
|
||||||
|
|
||||||
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|
||||||
predictor.set_image(<your_image>)
|
|
||||||
masks, _, _ = predictor.predict(<input_prompts>)
|
|
||||||
```
|
|
||||||
|
|
||||||
Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) for static image use cases.
|
Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) for static image use cases.
|
||||||
|
|
||||||
SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) for automatic mask generation in images.
|
SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) for automatic mask generation in images.
|
||||||
@@ -110,7 +97,26 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
or from Hugging Face, as follows:
|
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
|
||||||
|
|
||||||
|
## Load from Hugging Face
|
||||||
|
|
||||||
|
Alternatively, models can also be loaded from Hugging Face using the `from_pretrained` method:
|
||||||
|
|
||||||
|
For image prediction:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||||
|
|
||||||
|
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
|
||||||
|
|
||||||
|
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
||||||
|
predictor.set_image(<your_image>)
|
||||||
|
masks, _, _ = predictor.predict(<input_prompts>)
|
||||||
|
```
|
||||||
|
|
||||||
|
For video prediction:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import torch
|
import torch
|
||||||
@@ -123,8 +129,6 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|||||||
masks, _, _ = predictor.predict(<input_prompts>)
|
masks, _, _ = predictor.predict(<input_prompts>)
|
||||||
```
|
```
|
||||||
|
|
||||||
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
|
|
||||||
|
|
||||||
## Model Description
|
## Model Description
|
||||||
|
|
||||||
| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
|
| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |
|
||||||
|
Reference in New Issue
Block a user