update visualization func

This commit is contained in:
rentainhe
2024-08-09 19:14:20 +08:00
parent ccacb31e59
commit cabbad473b
2 changed files with 88 additions and 5 deletions

View File

@@ -29,7 +29,7 @@ if torch.cuda.get_device_properties(0).major >= 8:
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device",device)
print("device", device)
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
@@ -189,10 +189,9 @@ for start_frame_idx in range(0, len(frame_names), step):
json.dump(json_data, f)
"""
Step 6: Draw the results and save the video
"""
CommonUtils.draw_masks_and_box(video_dir, mask_data_dir, json_data_dir, result_dir)
CommonUtils.draw_masks_and_box_with_supervision(video_dir, mask_data_dir, json_data_dir, result_dir)
create_video_from_images(result_dir, output_video_path, frame_rate=30)

View File

@@ -3,6 +3,7 @@ import json
import cv2
import numpy as np
from dataclasses import dataclass
import supervision as sv
import random
class CommonUtils:
@@ -22,6 +23,89 @@ class CommonUtils:
except Exception as e:
print(f"An error occurred while creating the path: {e}")
@staticmethod
def draw_masks_and_box_with_supervision(raw_image_path, mask_path, json_path, output_path):
CommonUtils.creat_dirs(output_path)
raw_image_name_list = os.listdir(raw_image_path)
raw_image_name_list.sort()
for raw_image_name in raw_image_name_list:
image_path = os.path.join(raw_image_path, raw_image_name)
image = cv2.imread(image_path)
if image is None:
raise FileNotFoundError("Image file not found.")
# load mask
mask_npy_path = os.path.join(mask_path, "mask_"+raw_image_name.split(".")[0]+".npy")
mask = np.load(mask_npy_path)
# color map
unique_ids = np.unique(mask)
# get each mask from unique mask file
all_object_masks = []
for uid in unique_ids:
if uid == 0: # skip background id
continue
else:
object_mask = (mask == uid)
all_object_masks.append(object_mask[None])
# get n masks: (n, h, w)
all_object_masks = np.concatenate(all_object_masks, axis=0)
# load box information
file_path = os.path.join(json_path, "mask_"+raw_image_name.split(".")[0]+".json")
all_object_boxes = []
all_object_ids = []
all_class_names = []
object_id_to_name = {}
with open(file_path, "r") as file:
json_data = json.load(file)
for obj_id, obj_item in json_data["labels"].items():
# box id
instance_id = obj_item["instance_id"]
if instance_id not in unique_ids: # not a valid box
continue
# box coordinates
x1, y1, x2, y2 = obj_item["x1"], obj_item["y1"], obj_item["x2"], obj_item["y2"]
all_object_boxes.append([x1, y1, x2, y2])
# box name
class_name = obj_item["class_name"]
# build id list and id2name mapping
all_object_ids.append(instance_id)
all_class_names.append(class_name)
object_id_to_name[instance_id] = class_name
# Adjust object id and boxes to ascending order
paired_id_and_box = zip(all_object_ids, all_object_boxes)
sorted_pair = sorted(paired_id_and_box, key=lambda pair: pair[0])
# Because we get the mask data as ascending order, so we also need to ascend box and ids
all_object_ids = [pair[0] for pair in sorted_pair]
all_object_boxes = [pair[1] for pair in sorted_pair]
detections = sv.Detections(
xyxy=np.array(all_object_boxes),
mask=all_object_masks,
class_id=np.array(all_object_ids, dtype=np.int32),
)
# custom label to show both id and class name
labels = [
f"{instance_id}: {class_name}" for instance_id, class_name in zip(all_object_ids, all_class_names)
]
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=labels)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
output_image_path = os.path.join(output_path, raw_image_name)
cv2.imwrite(output_image_path, annotated_frame)
print(f"Annotated image saved as {output_image_path}")
@staticmethod
def draw_masks_and_box(raw_image_path, mask_path, json_path, output_path):
CommonUtils.creat_dirs(output_path)
@@ -40,7 +124,7 @@ class CommonUtils:
colors = {uid: CommonUtils.random_color() for uid in unique_ids}
colors[0] = (0, 0, 0) # background color
# apply mask to image
# apply mask to image in RBG channels
colored_mask = np.zeros_like(image)
for uid in unique_ids:
colored_mask[mask == uid] = colors[uid]