update visualization func
This commit is contained in:
@@ -3,6 +3,7 @@ import json
|
||||
import cv2
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
import supervision as sv
|
||||
import random
|
||||
|
||||
class CommonUtils:
|
||||
@@ -21,7 +22,90 @@ class CommonUtils:
|
||||
print(f"Path '{path}' already exists.")
|
||||
except Exception as e:
|
||||
print(f"An error occurred while creating the path: {e}")
|
||||
|
||||
|
||||
@staticmethod
|
||||
def draw_masks_and_box_with_supervision(raw_image_path, mask_path, json_path, output_path):
|
||||
CommonUtils.creat_dirs(output_path)
|
||||
raw_image_name_list = os.listdir(raw_image_path)
|
||||
raw_image_name_list.sort()
|
||||
for raw_image_name in raw_image_name_list:
|
||||
image_path = os.path.join(raw_image_path, raw_image_name)
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
raise FileNotFoundError("Image file not found.")
|
||||
# load mask
|
||||
mask_npy_path = os.path.join(mask_path, "mask_"+raw_image_name.split(".")[0]+".npy")
|
||||
mask = np.load(mask_npy_path)
|
||||
# color map
|
||||
unique_ids = np.unique(mask)
|
||||
|
||||
# get each mask from unique mask file
|
||||
all_object_masks = []
|
||||
for uid in unique_ids:
|
||||
if uid == 0: # skip background id
|
||||
continue
|
||||
else:
|
||||
object_mask = (mask == uid)
|
||||
all_object_masks.append(object_mask[None])
|
||||
|
||||
# get n masks: (n, h, w)
|
||||
all_object_masks = np.concatenate(all_object_masks, axis=0)
|
||||
|
||||
# load box information
|
||||
file_path = os.path.join(json_path, "mask_"+raw_image_name.split(".")[0]+".json")
|
||||
|
||||
all_object_boxes = []
|
||||
all_object_ids = []
|
||||
all_class_names = []
|
||||
object_id_to_name = {}
|
||||
with open(file_path, "r") as file:
|
||||
json_data = json.load(file)
|
||||
for obj_id, obj_item in json_data["labels"].items():
|
||||
# box id
|
||||
instance_id = obj_item["instance_id"]
|
||||
if instance_id not in unique_ids: # not a valid box
|
||||
continue
|
||||
# box coordinates
|
||||
x1, y1, x2, y2 = obj_item["x1"], obj_item["y1"], obj_item["x2"], obj_item["y2"]
|
||||
all_object_boxes.append([x1, y1, x2, y2])
|
||||
# box name
|
||||
class_name = obj_item["class_name"]
|
||||
|
||||
# build id list and id2name mapping
|
||||
all_object_ids.append(instance_id)
|
||||
all_class_names.append(class_name)
|
||||
object_id_to_name[instance_id] = class_name
|
||||
|
||||
# Adjust object id and boxes to ascending order
|
||||
paired_id_and_box = zip(all_object_ids, all_object_boxes)
|
||||
sorted_pair = sorted(paired_id_and_box, key=lambda pair: pair[0])
|
||||
|
||||
# Because we get the mask data as ascending order, so we also need to ascend box and ids
|
||||
all_object_ids = [pair[0] for pair in sorted_pair]
|
||||
all_object_boxes = [pair[1] for pair in sorted_pair]
|
||||
|
||||
detections = sv.Detections(
|
||||
xyxy=np.array(all_object_boxes),
|
||||
mask=all_object_masks,
|
||||
class_id=np.array(all_object_ids, dtype=np.int32),
|
||||
)
|
||||
|
||||
# custom label to show both id and class name
|
||||
labels = [
|
||||
f"{instance_id}: {class_name}" for instance_id, class_name in zip(all_object_ids, all_class_names)
|
||||
]
|
||||
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections)
|
||||
label_annotator = sv.LabelAnnotator()
|
||||
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=labels)
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
|
||||
output_image_path = os.path.join(output_path, raw_image_name)
|
||||
cv2.imwrite(output_image_path, annotated_frame)
|
||||
print(f"Annotated image saved as {output_image_path}")
|
||||
|
||||
@staticmethod
|
||||
def draw_masks_and_box(raw_image_path, mask_path, json_path, output_path):
|
||||
CommonUtils.creat_dirs(output_path)
|
||||
@@ -40,7 +124,7 @@ class CommonUtils:
|
||||
colors = {uid: CommonUtils.random_color() for uid in unique_ids}
|
||||
colors[0] = (0, 0, 0) # background color
|
||||
|
||||
# apply mask to image
|
||||
# apply mask to image in RBG channels
|
||||
colored_mask = np.zeros_like(image)
|
||||
for uid in unique_ids:
|
||||
colored_mask[mask == uid] = colors[uid]
|
||||
|
Reference in New Issue
Block a user