feat:add grounded_sam2_tracking_camera_with_continuous_id.py (closes … (#97)
* feat:add grounded_sam2_tracking_camera_with_continuous_id.py (closes #74) * update README
This commit is contained in:
10
README.md
10
README.md
@@ -335,6 +335,16 @@ python grounded_sam2_tracking_demo_with_continuous_id_plus.py
|
||||
|
||||
```
|
||||
|
||||
### Grounded-SAM-2 Real-Time Object Tracking with Continuous ID (Live Video / Camera Stream)
|
||||
|
||||
This method enables **real-time object tracking** with **ID continuity** from a live camera or video stream.
|
||||
|
||||
```bash
|
||||
python grounded_sam2_tracking_camera_with_continuous_id.py
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Grounded SAM 2 Florence-2 Demos
|
||||
### Grounded SAM 2 Florence-2 Image Demo
|
||||
|
||||
|
536
grounded_sam2_tracking_camera_with_continuous_id.py
Normal file
536
grounded_sam2_tracking_camera_with_continuous_id.py
Normal file
@@ -0,0 +1,536 @@
|
||||
import copy
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
||||
from utils.common_utils import CommonUtils
|
||||
from utils.mask_dictionary_model import MaskDictionaryModel, ObjectInfo
|
||||
from utils.track_utils import sample_points_from_masks
|
||||
from utils.video_utils import create_video_from_images
|
||||
|
||||
# Setup environment
|
||||
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
||||
if torch.cuda.get_device_properties(0).major >= 8:
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
|
||||
class GroundingDinoPredictor:
|
||||
"""
|
||||
Wrapper for using a GroundingDINO model for zero-shot object detection.
|
||||
"""
|
||||
|
||||
def __init__(self, model_id="IDEA-Research/grounding-dino-tiny", device="cuda"):
|
||||
"""
|
||||
Initialize the GroundingDINO predictor.
|
||||
Args:
|
||||
model_id (str): HuggingFace model ID to load.
|
||||
device (str): Device to run the model on ('cuda' or 'cpu').
|
||||
"""
|
||||
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
||||
|
||||
self.device = device
|
||||
self.processor = AutoProcessor.from_pretrained(model_id)
|
||||
self.model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(
|
||||
device
|
||||
)
|
||||
|
||||
def predict(
|
||||
self,
|
||||
image: "PIL.Image.Image",
|
||||
text_prompts: str,
|
||||
box_threshold=0.25,
|
||||
text_threshold=0.25,
|
||||
):
|
||||
"""
|
||||
Perform object detection using text prompts.
|
||||
Args:
|
||||
image (PIL.Image.Image): Input RGB image.
|
||||
text_prompts (str): Text prompt describing target objects.
|
||||
box_threshold (float): Confidence threshold for box selection.
|
||||
text_threshold (float): Confidence threshold for text match.
|
||||
Returns:
|
||||
Tuple[Tensor, List[str]]: Bounding boxes and matched class labels.
|
||||
"""
|
||||
inputs = self.processor(
|
||||
images=image, text=text_prompts, return_tensors="pt"
|
||||
).to(self.device)
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**inputs)
|
||||
|
||||
results = self.processor.post_process_grounded_object_detection(
|
||||
outputs,
|
||||
inputs.input_ids,
|
||||
box_threshold=box_threshold,
|
||||
text_threshold=text_threshold,
|
||||
target_sizes=[image.size[::-1]],
|
||||
)
|
||||
|
||||
return results[0]["boxes"], results[0]["labels"]
|
||||
|
||||
|
||||
class SAM2ImageSegmentor:
|
||||
"""
|
||||
Wrapper class for SAM2-based segmentation given bounding boxes.
|
||||
"""
|
||||
|
||||
def __init__(self, sam_model_cfg: str, sam_model_ckpt: str, device="cuda"):
|
||||
"""
|
||||
Initialize the SAM2 image segmentor.
|
||||
Args:
|
||||
sam_model_cfg (str): Path to the SAM2 config file.
|
||||
sam_model_ckpt (str): Path to the SAM2 checkpoint file.
|
||||
device (str): Device to load the model on ('cuda' or 'cpu').
|
||||
"""
|
||||
from sam2.build_sam import build_sam2
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
|
||||
self.device = device
|
||||
sam_model = build_sam2(sam_model_cfg, sam_model_ckpt, device=device)
|
||||
self.predictor = SAM2ImagePredictor(sam_model)
|
||||
|
||||
def set_image(self, image: np.ndarray):
|
||||
"""
|
||||
Set the input image for segmentation.
|
||||
Args:
|
||||
image (np.ndarray): RGB image array with shape (H, W, 3).
|
||||
"""
|
||||
self.predictor.set_image(image)
|
||||
|
||||
def predict_masks_from_boxes(self, boxes: torch.Tensor):
|
||||
"""
|
||||
Predict segmentation masks from given bounding boxes.
|
||||
Args:
|
||||
boxes (torch.Tensor): Bounding boxes as (N, 4) tensor.
|
||||
Returns:
|
||||
Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
- masks: Binary masks per box, shape (N, H, W)
|
||||
- scores: Confidence scores for each mask
|
||||
- logits: Raw logits from the model
|
||||
"""
|
||||
masks, scores, logits = self.predictor.predict(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
box=boxes,
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
# Normalize shape to (N, H, W)
|
||||
if masks.ndim == 2:
|
||||
masks = masks[None]
|
||||
scores = scores[None]
|
||||
logits = logits[None]
|
||||
elif masks.ndim == 4:
|
||||
masks = masks.squeeze(1)
|
||||
|
||||
return masks, scores, logits
|
||||
|
||||
|
||||
class IncrementalObjectTracker:
|
||||
def __init__(
|
||||
self,
|
||||
grounding_model_id="IDEA-Research/grounding-dino-tiny",
|
||||
sam2_model_cfg="configs/sam2.1/sam2.1_hiera_l.yaml",
|
||||
sam2_ckpt_path="./checkpoints/sam2.1_hiera_large.pt",
|
||||
device="cuda",
|
||||
prompt_text="car.",
|
||||
detection_interval=20,
|
||||
):
|
||||
"""
|
||||
Initialize an incremental object tracker using GroundingDINO and SAM2.
|
||||
Args:
|
||||
grounding_model_id (str): HuggingFace model ID for GroundingDINO.
|
||||
sam2_model_cfg (str): Path to SAM2 model config file.
|
||||
sam2_ckpt_path (str): Path to SAM2 model checkpoint.
|
||||
device (str): Device to run the models on ('cuda' or 'cpu').
|
||||
prompt_text (str): Initial text prompt for detection.
|
||||
detection_interval (int): Frame interval between full detections.
|
||||
"""
|
||||
self.device = device
|
||||
self.detection_interval = detection_interval
|
||||
self.prompt_text = prompt_text
|
||||
|
||||
# Load models
|
||||
self.grounding_predictor = GroundingDinoPredictor(
|
||||
model_id=grounding_model_id, device=device
|
||||
)
|
||||
self.sam2_segmentor = SAM2ImageSegmentor(
|
||||
sam_model_cfg=sam2_model_cfg,
|
||||
sam_model_ckpt=sam2_ckpt_path,
|
||||
device=device,
|
||||
)
|
||||
self.video_predictor = build_sam2_video_predictor(
|
||||
sam2_model_cfg, sam2_ckpt_path
|
||||
)
|
||||
|
||||
# Initialize inference state
|
||||
self.inference_state = self.video_predictor.init_state()
|
||||
self.inference_state["images"] = torch.empty((0, 3, 1024, 1024), device=device)
|
||||
self.total_frames = 0
|
||||
self.objects_count = 0
|
||||
self.frame_cache_limit = detection_interval - 1 # or higher depending on memory
|
||||
|
||||
# Store tracking results
|
||||
self.last_mask_dict = MaskDictionaryModel()
|
||||
self.track_dict = MaskDictionaryModel()
|
||||
|
||||
def add_image(self, image_np: np.ndarray):
|
||||
"""
|
||||
Add a new image frame to the tracker and perform detection or tracking update.
|
||||
Args:
|
||||
image_np (np.ndarray): Input RGB image as (H, W, 3), dtype=uint8.
|
||||
Returns:
|
||||
np.ndarray: Annotated image with object masks and labels.
|
||||
"""
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
img_pil = Image.fromarray(image_np)
|
||||
|
||||
# Step 1: Perform detection every detection_interval frames
|
||||
if self.total_frames % self.detection_interval == 0:
|
||||
if (
|
||||
self.inference_state["video_height"] is None
|
||||
or self.inference_state["video_width"] is None
|
||||
):
|
||||
(
|
||||
self.inference_state["video_height"],
|
||||
self.inference_state["video_width"],
|
||||
) = image_np.shape[:2]
|
||||
|
||||
if self.inference_state["images"].shape[0] > self.frame_cache_limit:
|
||||
print(
|
||||
f"[Reset] Resetting inference state after {self.frame_cache_limit} frames to free memory."
|
||||
)
|
||||
self.inference_state = self.video_predictor.init_state()
|
||||
self.inference_state["images"] = torch.empty(
|
||||
(0, 3, 1024, 1024), device=self.device
|
||||
)
|
||||
(
|
||||
self.inference_state["video_height"],
|
||||
self.inference_state["video_width"],
|
||||
) = image_np.shape[:2]
|
||||
|
||||
# 1.1 GroundingDINO object detection
|
||||
boxes, labels = self.grounding_predictor.predict(img_pil, self.prompt_text)
|
||||
if boxes.shape[0] == 0:
|
||||
return
|
||||
|
||||
# 1.2 SAM2 segmentation from detection boxes
|
||||
self.sam2_segmentor.set_image(image_np)
|
||||
masks, scores, logits = self.sam2_segmentor.predict_masks_from_boxes(boxes)
|
||||
|
||||
# 1.3 Build MaskDictionaryModel
|
||||
mask_dict = MaskDictionaryModel(
|
||||
promote_type="mask", mask_name=f"mask_{self.total_frames:05d}.npy"
|
||||
)
|
||||
mask_dict.add_new_frame_annotation(
|
||||
mask_list=torch.tensor(masks).to(self.device),
|
||||
box_list=torch.tensor(boxes),
|
||||
label_list=labels,
|
||||
)
|
||||
|
||||
# 1.4 Object ID tracking and IOU-based update
|
||||
self.objects_count = mask_dict.update_masks(
|
||||
tracking_annotation_dict=self.last_mask_dict,
|
||||
iou_threshold=0.3,
|
||||
objects_count=self.objects_count,
|
||||
)
|
||||
|
||||
# 1.5 Reset video tracker state
|
||||
frame_idx = self.video_predictor.add_new_frame(
|
||||
self.inference_state, image_np
|
||||
)
|
||||
self.video_predictor.reset_state(self.inference_state)
|
||||
|
||||
for object_id, object_info in mask_dict.labels.items():
|
||||
frame_idx, _, _ = self.video_predictor.add_new_mask(
|
||||
self.inference_state,
|
||||
frame_idx,
|
||||
object_id,
|
||||
object_info.mask,
|
||||
)
|
||||
|
||||
self.track_dict = copy.deepcopy(mask_dict)
|
||||
self.last_mask_dict = mask_dict
|
||||
|
||||
else:
|
||||
# Step 2: Use incremental tracking for intermediate frames
|
||||
frame_idx = self.video_predictor.add_new_frame(
|
||||
self.inference_state, image_np
|
||||
)
|
||||
|
||||
# Step 3: Tracking propagation using the video predictor
|
||||
frame_idx, obj_ids, video_res_masks = self.video_predictor.infer_single_frame(
|
||||
inference_state=self.inference_state,
|
||||
frame_idx=frame_idx,
|
||||
)
|
||||
|
||||
# Step 4: Update the mask dictionary based on tracked masks
|
||||
frame_masks = MaskDictionaryModel()
|
||||
for i, obj_id in enumerate(obj_ids):
|
||||
out_mask = video_res_masks[i] > 0.0
|
||||
object_info = ObjectInfo(
|
||||
instance_id=obj_id,
|
||||
mask=out_mask[0],
|
||||
class_name=self.track_dict.get_target_class_name(obj_id),
|
||||
logit=self.track_dict.get_target_logit(obj_id),
|
||||
)
|
||||
object_info.update_box()
|
||||
frame_masks.labels[obj_id] = object_info
|
||||
frame_masks.mask_name = f"mask_{frame_idx:05d}.npy"
|
||||
frame_masks.mask_height = out_mask.shape[-2]
|
||||
frame_masks.mask_width = out_mask.shape[-1]
|
||||
|
||||
self.last_mask_dict = copy.deepcopy(frame_masks)
|
||||
|
||||
# Step 5: Build mask array
|
||||
H, W = image_np.shape[:2]
|
||||
mask_img = torch.zeros((H, W), dtype=torch.int32)
|
||||
for obj_id, obj_info in self.last_mask_dict.labels.items():
|
||||
mask_img[obj_info.mask == True] = obj_id
|
||||
|
||||
mask_array = mask_img.cpu().numpy()
|
||||
|
||||
# Step 6: Visualization
|
||||
annotated_frame = self.visualize_frame_with_mask_and_metadata(
|
||||
image_np=image_np,
|
||||
mask_array=mask_array,
|
||||
json_metadata=self.last_mask_dict.to_dict(),
|
||||
)
|
||||
|
||||
print(f"[Tracker] Total processed frames: {self.total_frames}")
|
||||
self.total_frames += 1
|
||||
torch.cuda.empty_cache()
|
||||
return annotated_frame
|
||||
|
||||
def set_prompt(self, new_prompt: str):
|
||||
"""
|
||||
Dynamically update the GroundingDINO prompt and reset tracking state
|
||||
to force a new object detection.
|
||||
"""
|
||||
self.prompt_text = new_prompt
|
||||
self.total_frames = 0 # Trigger immediate re-detection
|
||||
self.inference_state = self.video_predictor.init_state()
|
||||
self.inference_state["images"] = torch.empty(
|
||||
(0, 3, 1024, 1024), device=self.device
|
||||
)
|
||||
self.inference_state["video_height"] = None
|
||||
self.inference_state["video_width"] = None
|
||||
|
||||
print(f"[Prompt Updated] New prompt: '{new_prompt}'. Tracker state reset.")
|
||||
|
||||
def save_current_state(self, output_dir, raw_image: np.ndarray = None):
|
||||
"""
|
||||
Save the current mask, metadata, raw image, and annotated result.
|
||||
Args:
|
||||
output_dir (str): The root output directory.
|
||||
raw_image (np.ndarray, optional): The original input image (RGB).
|
||||
"""
|
||||
mask_data_dir = os.path.join(output_dir, "mask_data")
|
||||
json_data_dir = os.path.join(output_dir, "json_data")
|
||||
image_data_dir = os.path.join(output_dir, "images")
|
||||
vis_data_dir = os.path.join(output_dir, "result")
|
||||
|
||||
os.makedirs(mask_data_dir, exist_ok=True)
|
||||
os.makedirs(json_data_dir, exist_ok=True)
|
||||
os.makedirs(image_data_dir, exist_ok=True)
|
||||
os.makedirs(vis_data_dir, exist_ok=True)
|
||||
|
||||
frame_masks = self.last_mask_dict
|
||||
|
||||
# Ensure mask_name is valid
|
||||
if not frame_masks.mask_name or not frame_masks.mask_name.endswith(".npy"):
|
||||
frame_masks.mask_name = f"mask_{self.total_frames:05d}.npy"
|
||||
|
||||
base_name = f"image_{self.total_frames:05d}"
|
||||
|
||||
# Save segmentation mask
|
||||
mask_img = torch.zeros(frame_masks.mask_height, frame_masks.mask_width)
|
||||
for obj_id, obj_info in frame_masks.labels.items():
|
||||
mask_img[obj_info.mask == True] = obj_id
|
||||
np.save(
|
||||
os.path.join(mask_data_dir, frame_masks.mask_name),
|
||||
mask_img.numpy().astype(np.uint16),
|
||||
)
|
||||
|
||||
# Save metadata as JSON
|
||||
json_path = os.path.join(json_data_dir, base_name + ".json")
|
||||
frame_masks.to_json(json_path)
|
||||
|
||||
# Save raw input image
|
||||
if raw_image is not None:
|
||||
image_bgr = cv2.cvtColor(raw_image, cv2.COLOR_RGB2BGR)
|
||||
cv2.imwrite(os.path.join(image_data_dir, base_name + ".jpg"), image_bgr)
|
||||
|
||||
# Save annotated image with mask, bounding boxes, and labels
|
||||
annotated_image = self.visualize_frame_with_mask_and_metadata(
|
||||
image_np=raw_image,
|
||||
mask_array=mask_img.numpy().astype(np.uint16),
|
||||
json_metadata=frame_masks.to_dict(),
|
||||
)
|
||||
annotated_bgr = cv2.cvtColor(annotated_image, cv2.COLOR_RGB2BGR)
|
||||
cv2.imwrite(
|
||||
os.path.join(vis_data_dir, base_name + "_annotated.jpg"), annotated_bgr
|
||||
)
|
||||
print(
|
||||
f"[Saved] {base_name}.jpg and {base_name}_annotated.jpg saved successfully."
|
||||
)
|
||||
|
||||
def visualize_frame_with_mask_and_metadata(
|
||||
self,
|
||||
image_np: np.ndarray,
|
||||
mask_array: np.ndarray,
|
||||
json_metadata: dict,
|
||||
):
|
||||
image = image_np.copy()
|
||||
H, W = image.shape[:2]
|
||||
|
||||
# Step 1: Parse metadata and build object entries
|
||||
metadata_lookup = json_metadata.get("labels", {})
|
||||
|
||||
all_object_ids = []
|
||||
all_object_boxes = []
|
||||
all_object_classes = []
|
||||
all_object_masks = []
|
||||
|
||||
for obj_id_str, obj_info in metadata_lookup.items():
|
||||
instance_id = obj_info.get("instance_id")
|
||||
if instance_id is None or instance_id == 0:
|
||||
continue
|
||||
if instance_id not in np.unique(mask_array):
|
||||
continue
|
||||
|
||||
object_mask = mask_array == instance_id
|
||||
all_object_ids.append(instance_id)
|
||||
x1 = obj_info.get("x1", 0)
|
||||
y1 = obj_info.get("y1", 0)
|
||||
x2 = obj_info.get("x2", 0)
|
||||
y2 = obj_info.get("y2", 0)
|
||||
all_object_boxes.append([x1, y1, x2, y2])
|
||||
all_object_classes.append(obj_info.get("class_name", "unknown"))
|
||||
all_object_masks.append(object_mask[None]) # Shape (1, H, W)
|
||||
|
||||
# Step 2: Check if valid objects exist
|
||||
if len(all_object_ids) == 0:
|
||||
print("No valid object instances found in metadata.")
|
||||
return image
|
||||
|
||||
# Step 3: Sort by instance ID
|
||||
paired = list(
|
||||
zip(all_object_ids, all_object_boxes, all_object_masks, all_object_classes)
|
||||
)
|
||||
paired.sort(key=lambda x: x[0])
|
||||
|
||||
all_object_ids = [p[0] for p in paired]
|
||||
all_object_boxes = [p[1] for p in paired]
|
||||
all_object_masks = [p[2] for p in paired]
|
||||
all_object_classes = [p[3] for p in paired]
|
||||
|
||||
# Step 4: Build detections
|
||||
all_object_masks = np.concatenate(all_object_masks, axis=0)
|
||||
detections = sv.Detections(
|
||||
xyxy=np.array(all_object_boxes),
|
||||
mask=all_object_masks,
|
||||
class_id=np.array(all_object_ids, dtype=np.int32),
|
||||
)
|
||||
labels = [
|
||||
f"{instance_id}: {class_name}"
|
||||
for instance_id, class_name in zip(all_object_ids, all_object_classes)
|
||||
]
|
||||
|
||||
# Step 5: Annotate image
|
||||
annotated_frame = image.copy()
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
label_annotator = sv.LabelAnnotator()
|
||||
|
||||
annotated_frame = mask_annotator.annotate(annotated_frame, detections)
|
||||
annotated_frame = box_annotator.annotate(annotated_frame, detections)
|
||||
annotated_frame = label_annotator.annotate(annotated_frame, detections, labels)
|
||||
|
||||
return annotated_frame
|
||||
|
||||
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
from utils.common_utils import CommonUtils
|
||||
|
||||
|
||||
def main():
|
||||
# Parameter settings
|
||||
output_dir = "./outputs"
|
||||
prompt_text = "hand."
|
||||
detection_interval = 20
|
||||
max_frames = 300 # Maximum number of frames to process (prevents infinite loop)
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
# Initialize the object tracker
|
||||
tracker = IncrementalObjectTracker(
|
||||
grounding_model_id="IDEA-Research/grounding-dino-tiny",
|
||||
sam2_model_cfg="configs/sam2.1/sam2.1_hiera_l.yaml",
|
||||
sam2_ckpt_path="./checkpoints/sam2.1_hiera_large.pt",
|
||||
device="cuda",
|
||||
prompt_text=prompt_text,
|
||||
detection_interval=detection_interval,
|
||||
)
|
||||
tracker.set_prompt("person.")
|
||||
|
||||
# Open the camera (or replace with local video file, e.g., cv2.VideoCapture("video.mp4"))
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
print("[Error] Cannot open camera.")
|
||||
return
|
||||
|
||||
print("[Info] Camera opened. Press 'q' to quit.")
|
||||
frame_idx = 0
|
||||
|
||||
try:
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("[Warning] Failed to capture frame.")
|
||||
break
|
||||
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
print(f"[Frame {frame_idx}] Processing live frame...")
|
||||
process_image = tracker.add_image(frame_rgb)
|
||||
|
||||
if process_image is None or not isinstance(process_image, np.ndarray):
|
||||
print(f"[Warning] Skipped frame {frame_idx} due to empty result.")
|
||||
frame_idx += 1
|
||||
continue
|
||||
|
||||
# process_image_bgr = cv2.cvtColor(process_image, cv2.COLOR_RGB2BGR)
|
||||
# cv2.imshow("Live Inference", process_image_bgr)
|
||||
|
||||
|
||||
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
# print("[Info] Quit signal received.")
|
||||
# break
|
||||
|
||||
tracker.save_current_state(output_dir=output_dir, raw_image=frame_rgb)
|
||||
frame_idx += 1
|
||||
|
||||
if frame_idx >= max_frames:
|
||||
print(f"[Info] Reached max_frames {max_frames}. Stopping.")
|
||||
break
|
||||
except KeyboardInterrupt:
|
||||
print("[Info] Interrupted by user (Ctrl+C).")
|
||||
finally:
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
print("[Done] Live inference complete.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -12,7 +12,7 @@ import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
||||
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
||||
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames ,process_stream_frame
|
||||
|
||||
|
||||
class SAM2VideoPredictor(SAM2Base):
|
||||
@@ -43,23 +43,33 @@ class SAM2VideoPredictor(SAM2Base):
|
||||
@torch.inference_mode()
|
||||
def init_state(
|
||||
self,
|
||||
video_path,
|
||||
video_path=None,
|
||||
offload_video_to_cpu=False,
|
||||
offload_state_to_cpu=False,
|
||||
async_loading_frames=False,
|
||||
):
|
||||
"""Initialize an inference state."""
|
||||
compute_device = self.device # device of the model
|
||||
images, video_height, video_width = load_video_frames(
|
||||
video_path=video_path,
|
||||
image_size=self.image_size,
|
||||
offload_video_to_cpu=offload_video_to_cpu,
|
||||
async_loading_frames=async_loading_frames,
|
||||
compute_device=compute_device,
|
||||
)
|
||||
inference_state = {}
|
||||
inference_state["images"] = images
|
||||
inference_state["num_frames"] = len(images)
|
||||
if video_path is not None:
|
||||
# Preload video frames from file
|
||||
images, video_height, video_width = load_video_frames(
|
||||
video_path=video_path,
|
||||
image_size=self.image_size,
|
||||
offload_video_to_cpu=offload_video_to_cpu,
|
||||
async_loading_frames=async_loading_frames,
|
||||
compute_device=compute_device,
|
||||
)
|
||||
inference_state["images"] = images
|
||||
inference_state["num_frames"] = len(images)
|
||||
else:
|
||||
# Real-time streaming mode
|
||||
print("Real-time streaming mode: waiting for first image input...")
|
||||
images = None
|
||||
video_height, video_width = None, None
|
||||
inference_state["images"] = None
|
||||
inference_state["num_frames"] = 0
|
||||
|
||||
# whether to offload the video frames to CPU memory
|
||||
# turning on this option saves the GPU memory with only a very small overhead
|
||||
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
||||
@@ -107,7 +117,9 @@ class SAM2VideoPredictor(SAM2Base):
|
||||
inference_state["tracking_has_started"] = False
|
||||
inference_state["frames_already_tracked"] = {}
|
||||
# Warm up the visual backbone and cache the image feature on frame 0
|
||||
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
||||
if video_path is not None:
|
||||
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
||||
|
||||
return inference_state
|
||||
|
||||
@classmethod
|
||||
@@ -743,6 +755,133 @@ class SAM2VideoPredictor(SAM2Base):
|
||||
inference_state, pred_masks
|
||||
)
|
||||
yield frame_idx, obj_ids, video_res_masks
|
||||
@torch.inference_mode()
|
||||
def add_new_frame(self, inference_state, new_image):
|
||||
"""
|
||||
Add a new frame to the inference state and cache its image features.
|
||||
Args:
|
||||
inference_state (dict): The current inference state containing cached frames, features, and tracking information.
|
||||
new_image (Tensor or ndarray): The input image frame (in HWC or CHW format depending on upstream processing).
|
||||
Returns:
|
||||
frame_idx (int): The index of the newly added frame within the inference state.
|
||||
"""
|
||||
device = inference_state["device"]
|
||||
|
||||
# Preprocess the input frame and convert it to a normalized tensor
|
||||
img_tensor, orig_h, orig_w = process_stream_frame(
|
||||
img_array=new_image,
|
||||
image_size=self.image_size,
|
||||
offload_to_cpu=False,
|
||||
compute_device=device,
|
||||
)
|
||||
|
||||
# Handle initialization of the image sequence if this is the first frame
|
||||
images = inference_state.get("images", None)
|
||||
if images is None or (isinstance(images, list) and len(images) == 0):
|
||||
# First frame: initialize image tensor batch
|
||||
inference_state["images"] = img_tensor.unsqueeze(0) # Shape: [1, C, H, W]
|
||||
else:
|
||||
# Append to existing tensor batch
|
||||
if isinstance(images, list):
|
||||
raise ValueError(
|
||||
"inference_state['images'] should be a Tensor, not a list after initialization."
|
||||
)
|
||||
|
||||
img_tensor = img_tensor.to(images.device)
|
||||
inference_state["images"] = torch.cat(
|
||||
[images, img_tensor.unsqueeze(0)], dim=0
|
||||
)
|
||||
|
||||
# Update frame count and compute new frame index
|
||||
inference_state["num_frames"] = inference_state["images"].shape[0]
|
||||
frame_idx = inference_state["num_frames"] - 1
|
||||
|
||||
# Cache visual features for the newly added frame
|
||||
image_batch = img_tensor.float().unsqueeze(0) # Shape: [1, C, H, W]
|
||||
backbone_out = self.forward_image(image_batch)
|
||||
inference_state["cached_features"][frame_idx] = (image_batch, backbone_out)
|
||||
|
||||
return frame_idx
|
||||
|
||||
@torch.inference_mode()
|
||||
def infer_single_frame(self, inference_state, frame_idx):
|
||||
"""
|
||||
Run inference on a single frame using existing points/masks in the inference state.
|
||||
Args:
|
||||
inference_state (dict): The current state of the tracking process.
|
||||
frame_idx (int): Index of the frame to run inference on.
|
||||
Returns:
|
||||
frame_idx (int): Same as input; the index of the processed frame.
|
||||
obj_ids (list): List of currently tracked object IDs.
|
||||
video_res_masks (Tensor): Segmentation masks predicted for the objects in the frame.
|
||||
"""
|
||||
if frame_idx >= inference_state["num_frames"]:
|
||||
raise ValueError(
|
||||
f"Frame index {frame_idx} out of range (num_frames={inference_state['num_frames']})."
|
||||
)
|
||||
|
||||
self.propagate_in_video_preflight(inference_state)
|
||||
|
||||
output_dict = inference_state["output_dict"]
|
||||
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
||||
batch_size = self._get_obj_num(inference_state)
|
||||
|
||||
# Ensure that initial conditioning points exist
|
||||
if len(output_dict["cond_frame_outputs"]) == 0:
|
||||
raise RuntimeError(
|
||||
"No conditioning points provided. Please add points before inference."
|
||||
)
|
||||
|
||||
# Decide whether to clear nearby memory based on number of objects
|
||||
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
||||
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
||||
)
|
||||
|
||||
obj_ids = inference_state["obj_ids"]
|
||||
|
||||
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
||||
# If output is already consolidated with conditioning inputs
|
||||
storage_key = "cond_frame_outputs"
|
||||
current_out = output_dict[storage_key][frame_idx]
|
||||
pred_masks = current_out["pred_masks"]
|
||||
|
||||
if clear_non_cond_mem:
|
||||
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
||||
|
||||
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
|
||||
# If output was inferred without conditioning
|
||||
storage_key = "non_cond_frame_outputs"
|
||||
current_out = output_dict[storage_key][frame_idx]
|
||||
pred_masks = current_out["pred_masks"]
|
||||
|
||||
else:
|
||||
# Run model inference for this frame
|
||||
storage_key = "non_cond_frame_outputs"
|
||||
current_out, pred_masks = self._run_single_frame_inference(
|
||||
inference_state=inference_state,
|
||||
output_dict=output_dict,
|
||||
frame_idx=frame_idx,
|
||||
batch_size=batch_size,
|
||||
is_init_cond_frame=False,
|
||||
point_inputs=None,
|
||||
mask_inputs=None,
|
||||
reverse=False,
|
||||
run_mem_encoder=True,
|
||||
)
|
||||
output_dict[storage_key][frame_idx] = current_out
|
||||
|
||||
# Organize per-object outputs and mark frame as tracked
|
||||
self._add_output_per_object(
|
||||
inference_state, frame_idx, current_out, storage_key
|
||||
)
|
||||
inference_state["frames_already_tracked"][frame_idx] = {"reverse": False}
|
||||
|
||||
# Convert output to original video resolution
|
||||
_, video_res_masks = self._get_orig_video_res_output(
|
||||
inference_state, pred_masks
|
||||
)
|
||||
|
||||
return frame_idx, obj_ids, video_res_masks
|
||||
|
||||
def _add_output_per_object(
|
||||
self, inference_state, frame_idx, current_out, storage_key
|
||||
|
@@ -8,6 +8,7 @@ import os
|
||||
import warnings
|
||||
from threading import Thread
|
||||
|
||||
from typing import Tuple
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
@@ -209,6 +210,74 @@ def load_video_frames(
|
||||
"Only MP4 video and JPEG folder are supported at this moment"
|
||||
)
|
||||
|
||||
def process_stream_frame(
|
||||
img_array: np.ndarray,
|
||||
image_size: int,
|
||||
img_mean: Tuple[float, float, float] = (0.485, 0.456, 0.406),
|
||||
img_std: Tuple[float, float, float] = (0.229, 0.224, 0.225),
|
||||
offload_to_cpu: bool = False,
|
||||
compute_device: torch.device = torch.device("cuda"),
|
||||
):
|
||||
"""
|
||||
Convert a raw image array (H,W,3 or 3,H,W) into a model‑ready tensor.
|
||||
Steps
|
||||
-----
|
||||
1. Resize the shorter side to `image_size`, keeping aspect ratio,
|
||||
then center‑crop/pad to `image_size` × `image_size`.
|
||||
2. Change layout to [3, H, W] and cast to float32 in [0,1].
|
||||
3. Normalise with ImageNet statistics.
|
||||
4. Optionally move to `compute_device`.
|
||||
Returns
|
||||
-------
|
||||
img_tensor : torch.FloatTensor # shape [3, image_size, image_size]
|
||||
orig_h : int
|
||||
orig_w : int
|
||||
"""
|
||||
|
||||
# ↪ uses your existing helper so behaviour matches the batch loader
|
||||
img_tensor, orig_h, orig_w = _resize_and_convert_to_tensor(img_array, image_size)
|
||||
|
||||
# Normalisation (done *after* potential device move for efficiency)
|
||||
img_mean_t = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
||||
img_std_t = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
||||
|
||||
if not offload_to_cpu:
|
||||
img_tensor = img_tensor.to(compute_device)
|
||||
img_mean_t = img_mean_t.to(compute_device)
|
||||
img_std_t = img_std_t.to(compute_device)
|
||||
|
||||
img_tensor.sub_(img_mean_t).div_(img_std_t)
|
||||
|
||||
return img_tensor, orig_h, orig_w
|
||||
|
||||
|
||||
def _resize_and_convert_to_tensor(img_array, image_size):
|
||||
"""
|
||||
Resize the input image array and convert it into a tensor.
|
||||
Also return original image height and width.
|
||||
"""
|
||||
# Convert numpy array to PIL image and ensure RGB
|
||||
img_pil = Image.fromarray(img_array).convert("RGB")
|
||||
|
||||
# Save original size (PIL: size = (width, height))
|
||||
video_width, video_height = img_pil.size
|
||||
|
||||
# Resize with high-quality LANCZOS filter
|
||||
img_resized = img_pil.resize((image_size, image_size), Image.Resampling.LANCZOS)
|
||||
|
||||
# Convert resized image back to numpy and then to float tensor
|
||||
img_resized_array = np.array(img_resized)
|
||||
|
||||
if img_resized_array.dtype == np.uint8:
|
||||
img_resized_array = img_resized_array / 255.0
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected dtype: {img_resized_array.dtype}")
|
||||
|
||||
# Convert to PyTorch tensor and permute to [C, H, W]
|
||||
img_tensor = torch.from_numpy(img_resized_array).permute(2, 0, 1)
|
||||
|
||||
return img_tensor, video_height, video_width
|
||||
|
||||
|
||||
def load_video_frames_from_jpg_images(
|
||||
video_path,
|
||||
|
Reference in New Issue
Block a user