init commit of samurai
This commit is contained in:
11
sam2/sam2/__init__.py
Normal file
11
sam2/sam2/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from hydra import initialize_config_module
|
||||
from hydra.core.global_hydra import GlobalHydra
|
||||
|
||||
if not GlobalHydra.instance().is_initialized():
|
||||
initialize_config_module("sam2", version_base="1.2")
|
454
sam2/sam2/automatic_mask_generator.py
Normal file
454
sam2/sam2/automatic_mask_generator.py
Normal file
@@ -0,0 +1,454 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
||||
|
||||
from sam2.modeling.sam2_base import SAM2Base
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from sam2.utils.amg import (
|
||||
area_from_rle,
|
||||
batch_iterator,
|
||||
batched_mask_to_box,
|
||||
box_xyxy_to_xywh,
|
||||
build_all_layer_point_grids,
|
||||
calculate_stability_score,
|
||||
coco_encode_rle,
|
||||
generate_crop_boxes,
|
||||
is_box_near_crop_edge,
|
||||
mask_to_rle_pytorch,
|
||||
MaskData,
|
||||
remove_small_regions,
|
||||
rle_to_mask,
|
||||
uncrop_boxes_xyxy,
|
||||
uncrop_masks,
|
||||
uncrop_points,
|
||||
)
|
||||
|
||||
|
||||
class SAM2AutomaticMaskGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
model: SAM2Base,
|
||||
points_per_side: Optional[int] = 32,
|
||||
points_per_batch: int = 64,
|
||||
pred_iou_thresh: float = 0.8,
|
||||
stability_score_thresh: float = 0.95,
|
||||
stability_score_offset: float = 1.0,
|
||||
mask_threshold: float = 0.0,
|
||||
box_nms_thresh: float = 0.7,
|
||||
crop_n_layers: int = 0,
|
||||
crop_nms_thresh: float = 0.7,
|
||||
crop_overlap_ratio: float = 512 / 1500,
|
||||
crop_n_points_downscale_factor: int = 1,
|
||||
point_grids: Optional[List[np.ndarray]] = None,
|
||||
min_mask_region_area: int = 0,
|
||||
output_mode: str = "binary_mask",
|
||||
use_m2m: bool = False,
|
||||
multimask_output: bool = True,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Using a SAM 2 model, generates masks for the entire image.
|
||||
Generates a grid of point prompts over the image, then filters
|
||||
low quality and duplicate masks. The default settings are chosen
|
||||
for SAM 2 with a HieraL backbone.
|
||||
|
||||
Arguments:
|
||||
model (Sam): The SAM 2 model to use for mask prediction.
|
||||
points_per_side (int or None): The number of points to be sampled
|
||||
along one side of the image. The total number of points is
|
||||
points_per_side**2. If None, 'point_grids' must provide explicit
|
||||
point sampling.
|
||||
points_per_batch (int): Sets the number of points run simultaneously
|
||||
by the model. Higher numbers may be faster but use more GPU memory.
|
||||
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
||||
model's predicted mask quality.
|
||||
stability_score_thresh (float): A filtering threshold in [0,1], using
|
||||
the stability of the mask under changes to the cutoff used to binarize
|
||||
the model's mask predictions.
|
||||
stability_score_offset (float): The amount to shift the cutoff when
|
||||
calculated the stability score.
|
||||
mask_threshold (float): Threshold for binarizing the mask logits
|
||||
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||
suppression to filter duplicate masks.
|
||||
crop_n_layers (int): If >0, mask prediction will be run again on
|
||||
crops of the image. Sets the number of layers to run, where each
|
||||
layer has 2**i_layer number of image crops.
|
||||
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
||||
suppression to filter duplicate masks between different crops.
|
||||
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
||||
In the first crop layer, crops will overlap by this fraction of
|
||||
the image length. Later layers with more crops scale down this overlap.
|
||||
crop_n_points_downscale_factor (int): The number of points-per-side
|
||||
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
||||
point_grids (list(np.ndarray) or None): A list over explicit grids
|
||||
of points used for sampling, normalized to [0,1]. The nth grid in the
|
||||
list is used in the nth crop layer. Exclusive with points_per_side.
|
||||
min_mask_region_area (int): If >0, postprocessing will be applied
|
||||
to remove disconnected regions and holes in masks with area smaller
|
||||
than min_mask_region_area. Requires opencv.
|
||||
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
||||
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
||||
For large resolutions, 'binary_mask' may consume large amounts of
|
||||
memory.
|
||||
use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
|
||||
multimask_output (bool): Whether to output multimask at each point of the grid.
|
||||
"""
|
||||
|
||||
assert (points_per_side is None) != (
|
||||
point_grids is None
|
||||
), "Exactly one of points_per_side or point_grid must be provided."
|
||||
if points_per_side is not None:
|
||||
self.point_grids = build_all_layer_point_grids(
|
||||
points_per_side,
|
||||
crop_n_layers,
|
||||
crop_n_points_downscale_factor,
|
||||
)
|
||||
elif point_grids is not None:
|
||||
self.point_grids = point_grids
|
||||
else:
|
||||
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
||||
|
||||
assert output_mode in [
|
||||
"binary_mask",
|
||||
"uncompressed_rle",
|
||||
"coco_rle",
|
||||
], f"Unknown output_mode {output_mode}."
|
||||
if output_mode == "coco_rle":
|
||||
try:
|
||||
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
||||
except ImportError as e:
|
||||
print("Please install pycocotools")
|
||||
raise e
|
||||
|
||||
self.predictor = SAM2ImagePredictor(
|
||||
model,
|
||||
max_hole_area=min_mask_region_area,
|
||||
max_sprinkle_area=min_mask_region_area,
|
||||
)
|
||||
self.points_per_batch = points_per_batch
|
||||
self.pred_iou_thresh = pred_iou_thresh
|
||||
self.stability_score_thresh = stability_score_thresh
|
||||
self.stability_score_offset = stability_score_offset
|
||||
self.mask_threshold = mask_threshold
|
||||
self.box_nms_thresh = box_nms_thresh
|
||||
self.crop_n_layers = crop_n_layers
|
||||
self.crop_nms_thresh = crop_nms_thresh
|
||||
self.crop_overlap_ratio = crop_overlap_ratio
|
||||
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
||||
self.min_mask_region_area = min_mask_region_area
|
||||
self.output_mode = output_mode
|
||||
self.use_m2m = use_m2m
|
||||
self.multimask_output = multimask_output
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
|
||||
"""
|
||||
Load a pretrained model from the Hugging Face hub.
|
||||
|
||||
Arguments:
|
||||
model_id (str): The Hugging Face repository ID.
|
||||
**kwargs: Additional arguments to pass to the model constructor.
|
||||
|
||||
Returns:
|
||||
(SAM2AutomaticMaskGenerator): The loaded model.
|
||||
"""
|
||||
from sam2.build_sam import build_sam2_hf
|
||||
|
||||
sam_model = build_sam2_hf(model_id, **kwargs)
|
||||
return cls(sam_model, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Generates masks for the given image.
|
||||
|
||||
Arguments:
|
||||
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
||||
|
||||
Returns:
|
||||
list(dict(str, any)): A list over records for masks. Each record is
|
||||
a dict containing the following keys:
|
||||
segmentation (dict(str, any) or np.ndarray): The mask. If
|
||||
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
||||
is a dictionary containing the RLE.
|
||||
bbox (list(float)): The box around the mask, in XYWH format.
|
||||
area (int): The area in pixels of the mask.
|
||||
predicted_iou (float): The model's own prediction of the mask's
|
||||
quality. This is filtered by the pred_iou_thresh parameter.
|
||||
point_coords (list(list(float))): The point coordinates input
|
||||
to the model to generate this mask.
|
||||
stability_score (float): A measure of the mask's quality. This
|
||||
is filtered on using the stability_score_thresh parameter.
|
||||
crop_box (list(float)): The crop of the image used to generate
|
||||
the mask, given in XYWH format.
|
||||
"""
|
||||
|
||||
# Generate masks
|
||||
mask_data = self._generate_masks(image)
|
||||
|
||||
# Encode masks
|
||||
if self.output_mode == "coco_rle":
|
||||
mask_data["segmentations"] = [
|
||||
coco_encode_rle(rle) for rle in mask_data["rles"]
|
||||
]
|
||||
elif self.output_mode == "binary_mask":
|
||||
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
||||
else:
|
||||
mask_data["segmentations"] = mask_data["rles"]
|
||||
|
||||
# Write mask records
|
||||
curr_anns = []
|
||||
for idx in range(len(mask_data["segmentations"])):
|
||||
ann = {
|
||||
"segmentation": mask_data["segmentations"][idx],
|
||||
"area": area_from_rle(mask_data["rles"][idx]),
|
||||
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
||||
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
||||
"point_coords": [mask_data["points"][idx].tolist()],
|
||||
"stability_score": mask_data["stability_score"][idx].item(),
|
||||
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
||||
}
|
||||
curr_anns.append(ann)
|
||||
|
||||
return curr_anns
|
||||
|
||||
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
||||
orig_size = image.shape[:2]
|
||||
crop_boxes, layer_idxs = generate_crop_boxes(
|
||||
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
||||
)
|
||||
|
||||
# Iterate over image crops
|
||||
data = MaskData()
|
||||
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
||||
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
||||
data.cat(crop_data)
|
||||
|
||||
# Remove duplicate masks between crops
|
||||
if len(crop_boxes) > 1:
|
||||
# Prefer masks from smaller crops
|
||||
scores = 1 / box_area(data["crop_boxes"])
|
||||
scores = scores.to(data["boxes"].device)
|
||||
keep_by_nms = batched_nms(
|
||||
data["boxes"].float(),
|
||||
scores,
|
||||
torch.zeros_like(data["boxes"][:, 0]), # categories
|
||||
iou_threshold=self.crop_nms_thresh,
|
||||
)
|
||||
data.filter(keep_by_nms)
|
||||
data.to_numpy()
|
||||
return data
|
||||
|
||||
def _process_crop(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
crop_box: List[int],
|
||||
crop_layer_idx: int,
|
||||
orig_size: Tuple[int, ...],
|
||||
) -> MaskData:
|
||||
# Crop the image and calculate embeddings
|
||||
x0, y0, x1, y1 = crop_box
|
||||
cropped_im = image[y0:y1, x0:x1, :]
|
||||
cropped_im_size = cropped_im.shape[:2]
|
||||
self.predictor.set_image(cropped_im)
|
||||
|
||||
# Get points for this crop
|
||||
points_scale = np.array(cropped_im_size)[None, ::-1]
|
||||
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
||||
|
||||
# Generate masks for this crop in batches
|
||||
data = MaskData()
|
||||
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
||||
batch_data = self._process_batch(
|
||||
points, cropped_im_size, crop_box, orig_size, normalize=True
|
||||
)
|
||||
data.cat(batch_data)
|
||||
del batch_data
|
||||
self.predictor.reset_predictor()
|
||||
|
||||
# Remove duplicates within this crop.
|
||||
keep_by_nms = batched_nms(
|
||||
data["boxes"].float(),
|
||||
data["iou_preds"],
|
||||
torch.zeros_like(data["boxes"][:, 0]), # categories
|
||||
iou_threshold=self.box_nms_thresh,
|
||||
)
|
||||
data.filter(keep_by_nms)
|
||||
|
||||
# Return to the original image frame
|
||||
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
||||
data["points"] = uncrop_points(data["points"], crop_box)
|
||||
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
||||
|
||||
return data
|
||||
|
||||
def _process_batch(
|
||||
self,
|
||||
points: np.ndarray,
|
||||
im_size: Tuple[int, ...],
|
||||
crop_box: List[int],
|
||||
orig_size: Tuple[int, ...],
|
||||
normalize=False,
|
||||
) -> MaskData:
|
||||
orig_h, orig_w = orig_size
|
||||
|
||||
# Run model on this batch
|
||||
points = torch.as_tensor(
|
||||
points, dtype=torch.float32, device=self.predictor.device
|
||||
)
|
||||
in_points = self.predictor._transforms.transform_coords(
|
||||
points, normalize=normalize, orig_hw=im_size
|
||||
)
|
||||
in_labels = torch.ones(
|
||||
in_points.shape[0], dtype=torch.int, device=in_points.device
|
||||
)
|
||||
masks, iou_preds, low_res_masks = self.predictor._predict(
|
||||
in_points[:, None, :],
|
||||
in_labels[:, None],
|
||||
multimask_output=self.multimask_output,
|
||||
return_logits=True,
|
||||
)
|
||||
|
||||
# Serialize predictions and store in MaskData
|
||||
data = MaskData(
|
||||
masks=masks.flatten(0, 1),
|
||||
iou_preds=iou_preds.flatten(0, 1),
|
||||
points=points.repeat_interleave(masks.shape[1], dim=0),
|
||||
low_res_masks=low_res_masks.flatten(0, 1),
|
||||
)
|
||||
del masks
|
||||
|
||||
if not self.use_m2m:
|
||||
# Filter by predicted IoU
|
||||
if self.pred_iou_thresh > 0.0:
|
||||
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Calculate and filter by stability score
|
||||
data["stability_score"] = calculate_stability_score(
|
||||
data["masks"], self.mask_threshold, self.stability_score_offset
|
||||
)
|
||||
if self.stability_score_thresh > 0.0:
|
||||
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
||||
data.filter(keep_mask)
|
||||
else:
|
||||
# One step refinement using previous mask predictions
|
||||
in_points = self.predictor._transforms.transform_coords(
|
||||
data["points"], normalize=normalize, orig_hw=im_size
|
||||
)
|
||||
labels = torch.ones(
|
||||
in_points.shape[0], dtype=torch.int, device=in_points.device
|
||||
)
|
||||
masks, ious = self.refine_with_m2m(
|
||||
in_points, labels, data["low_res_masks"], self.points_per_batch
|
||||
)
|
||||
data["masks"] = masks.squeeze(1)
|
||||
data["iou_preds"] = ious.squeeze(1)
|
||||
|
||||
if self.pred_iou_thresh > 0.0:
|
||||
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
||||
data.filter(keep_mask)
|
||||
|
||||
data["stability_score"] = calculate_stability_score(
|
||||
data["masks"], self.mask_threshold, self.stability_score_offset
|
||||
)
|
||||
if self.stability_score_thresh > 0.0:
|
||||
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Threshold masks and calculate boxes
|
||||
data["masks"] = data["masks"] > self.mask_threshold
|
||||
data["boxes"] = batched_mask_to_box(data["masks"])
|
||||
|
||||
# Filter boxes that touch crop boundaries
|
||||
keep_mask = ~is_box_near_crop_edge(
|
||||
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
||||
)
|
||||
if not torch.all(keep_mask):
|
||||
data.filter(keep_mask)
|
||||
|
||||
# Compress to RLE
|
||||
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
||||
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
||||
del data["masks"]
|
||||
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def postprocess_small_regions(
|
||||
mask_data: MaskData, min_area: int, nms_thresh: float
|
||||
) -> MaskData:
|
||||
"""
|
||||
Removes small disconnected regions and holes in masks, then reruns
|
||||
box NMS to remove any new duplicates.
|
||||
|
||||
Edits mask_data in place.
|
||||
|
||||
Requires open-cv as a dependency.
|
||||
"""
|
||||
if len(mask_data["rles"]) == 0:
|
||||
return mask_data
|
||||
|
||||
# Filter small disconnected regions and holes
|
||||
new_masks = []
|
||||
scores = []
|
||||
for rle in mask_data["rles"]:
|
||||
mask = rle_to_mask(rle)
|
||||
|
||||
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
||||
unchanged = not changed
|
||||
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
||||
unchanged = unchanged and not changed
|
||||
|
||||
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
||||
# Give score=0 to changed masks and score=1 to unchanged masks
|
||||
# so NMS will prefer ones that didn't need postprocessing
|
||||
scores.append(float(unchanged))
|
||||
|
||||
# Recalculate boxes and remove any new duplicates
|
||||
masks = torch.cat(new_masks, dim=0)
|
||||
boxes = batched_mask_to_box(masks)
|
||||
keep_by_nms = batched_nms(
|
||||
boxes.float(),
|
||||
torch.as_tensor(scores),
|
||||
torch.zeros_like(boxes[:, 0]), # categories
|
||||
iou_threshold=nms_thresh,
|
||||
)
|
||||
|
||||
# Only recalculate RLEs for masks that have changed
|
||||
for i_mask in keep_by_nms:
|
||||
if scores[i_mask] == 0.0:
|
||||
mask_torch = masks[i_mask].unsqueeze(0)
|
||||
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
||||
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
||||
mask_data.filter(keep_by_nms)
|
||||
|
||||
return mask_data
|
||||
|
||||
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
|
||||
new_masks = []
|
||||
new_iou_preds = []
|
||||
|
||||
for cur_points, cur_point_labels, low_res_mask in batch_iterator(
|
||||
points_per_batch, points, point_labels, low_res_masks
|
||||
):
|
||||
best_masks, best_iou_preds, _ = self.predictor._predict(
|
||||
cur_points[:, None, :],
|
||||
cur_point_labels[:, None],
|
||||
mask_input=low_res_mask[:, None, :],
|
||||
multimask_output=False,
|
||||
return_logits=True,
|
||||
)
|
||||
new_masks.append(best_masks)
|
||||
new_iou_preds.append(best_iou_preds)
|
||||
masks = torch.cat(new_masks, dim=0)
|
||||
return masks, torch.cat(new_iou_preds, dim=0)
|
167
sam2/sam2/build_sam.py
Normal file
167
sam2/sam2/build_sam.py
Normal file
@@ -0,0 +1,167 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
import torch
|
||||
from hydra import compose
|
||||
from hydra.utils import instantiate
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
import sam2
|
||||
|
||||
# Check if the user is running Python from the parent directory of the sam2 repo
|
||||
# (i.e. the directory where this repo is cloned into) -- this is not supported since
|
||||
# it could shadow the sam2 package and cause issues.
|
||||
if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
|
||||
# If the user has "sam2/sam2" in their path, they are likey importing the repo itself
|
||||
# as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
|
||||
# This typically happens because the user is running Python from the parent directory
|
||||
# that contains the sam2 repo they cloned.
|
||||
raise RuntimeError(
|
||||
"You're likely running Python from the parent directory of the sam2 repository "
|
||||
"(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
|
||||
"This is not supported since the `sam2` Python package could be shadowed by the "
|
||||
"repository name (the repository is also named `sam2` and contains the Python package "
|
||||
"in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
|
||||
"rather than its parent dir, or from your home directory) after installing SAM 2."
|
||||
)
|
||||
|
||||
|
||||
HF_MODEL_ID_TO_FILENAMES = {
|
||||
"facebook/sam2-hiera-tiny": (
|
||||
"configs/sam2/sam2_hiera_t.yaml",
|
||||
"sam2_hiera_tiny.pt",
|
||||
),
|
||||
"facebook/sam2-hiera-small": (
|
||||
"configs/sam2/sam2_hiera_s.yaml",
|
||||
"sam2_hiera_small.pt",
|
||||
),
|
||||
"facebook/sam2-hiera-base-plus": (
|
||||
"configs/sam2/sam2_hiera_b+.yaml",
|
||||
"sam2_hiera_base_plus.pt",
|
||||
),
|
||||
"facebook/sam2-hiera-large": (
|
||||
"configs/sam2/sam2_hiera_l.yaml",
|
||||
"sam2_hiera_large.pt",
|
||||
),
|
||||
"facebook/sam2.1-hiera-tiny": (
|
||||
"configs/sam2.1/sam2.1_hiera_t.yaml",
|
||||
"sam2.1_hiera_tiny.pt",
|
||||
),
|
||||
"facebook/sam2.1-hiera-small": (
|
||||
"configs/sam2.1/sam2.1_hiera_s.yaml",
|
||||
"sam2.1_hiera_small.pt",
|
||||
),
|
||||
"facebook/sam2.1-hiera-base-plus": (
|
||||
"configs/sam2.1/sam2.1_hiera_b+.yaml",
|
||||
"sam2.1_hiera_base_plus.pt",
|
||||
),
|
||||
"facebook/sam2.1-hiera-large": (
|
||||
"configs/sam2.1/sam2.1_hiera_l.yaml",
|
||||
"sam2.1_hiera_large.pt",
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def build_sam2(
|
||||
config_file,
|
||||
ckpt_path=None,
|
||||
device="cuda",
|
||||
mode="eval",
|
||||
hydra_overrides_extra=[],
|
||||
apply_postprocessing=True,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
if apply_postprocessing:
|
||||
hydra_overrides_extra = hydra_overrides_extra.copy()
|
||||
hydra_overrides_extra += [
|
||||
# dynamically fall back to multi-mask if the single mask is not stable
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
||||
]
|
||||
# Read config and init model
|
||||
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
||||
OmegaConf.resolve(cfg)
|
||||
model = instantiate(cfg.model, _recursive_=True)
|
||||
_load_checkpoint(model, ckpt_path)
|
||||
model = model.to(device)
|
||||
if mode == "eval":
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def build_sam2_video_predictor(
|
||||
config_file,
|
||||
ckpt_path=None,
|
||||
device="cuda",
|
||||
mode="eval",
|
||||
hydra_overrides_extra=[],
|
||||
apply_postprocessing=True,
|
||||
**kwargs,
|
||||
):
|
||||
hydra_overrides = [
|
||||
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
||||
]
|
||||
if apply_postprocessing:
|
||||
hydra_overrides_extra = hydra_overrides_extra.copy()
|
||||
hydra_overrides_extra += [
|
||||
# dynamically fall back to multi-mask if the single mask is not stable
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
||||
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
||||
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
|
||||
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
||||
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
|
||||
"++model.fill_hole_area=8",
|
||||
]
|
||||
hydra_overrides.extend(hydra_overrides_extra)
|
||||
|
||||
# Read config and init model
|
||||
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
||||
OmegaConf.resolve(cfg)
|
||||
model = instantiate(cfg.model, _recursive_=True)
|
||||
_load_checkpoint(model, ckpt_path)
|
||||
model = model.to(device)
|
||||
if mode == "eval":
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def _hf_download(model_id):
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
|
||||
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
|
||||
return config_name, ckpt_path
|
||||
|
||||
|
||||
def build_sam2_hf(model_id, **kwargs):
|
||||
config_name, ckpt_path = _hf_download(model_id)
|
||||
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
|
||||
|
||||
|
||||
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
||||
config_name, ckpt_path = _hf_download(model_id)
|
||||
return build_sam2_video_predictor(
|
||||
config_file=config_name, ckpt_path=ckpt_path, **kwargs
|
||||
)
|
||||
|
||||
|
||||
def _load_checkpoint(model, ckpt_path):
|
||||
if ckpt_path is not None:
|
||||
sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
|
||||
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
||||
if missing_keys:
|
||||
logging.error(missing_keys)
|
||||
raise RuntimeError()
|
||||
if unexpected_keys:
|
||||
logging.error(unexpected_keys)
|
||||
raise RuntimeError()
|
||||
logging.info("Loaded checkpoint sucessfully")
|
116
sam2/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
Normal file
116
sam2/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
Normal file
@@ -0,0 +1,116 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 112
|
||||
num_heads: 2
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [896, 448, 224, 112]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
120
sam2/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
Normal file
120
sam2/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
Normal file
@@ -0,0 +1,120 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 144
|
||||
num_heads: 2
|
||||
stages: [2, 6, 36, 4]
|
||||
global_att_blocks: [23, 33, 43]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
window_spec: [8, 4, 16, 8]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [1152, 576, 288, 144]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
119
sam2/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
Normal file
119
sam2/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
Normal file
@@ -0,0 +1,119 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 11, 2]
|
||||
global_att_blocks: [7, 10, 13]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
121
sam2/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
Normal file
121
sam2/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
Normal file
@@ -0,0 +1,121 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 7, 2]
|
||||
global_att_blocks: [5, 7, 9]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
# SAM decoder
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
# HieraT does not currently support compilation, should always be set to False
|
||||
compile_image_encoder: False
|
@@ -0,0 +1,339 @@
|
||||
# @package _global_
|
||||
|
||||
scratch:
|
||||
resolution: 1024
|
||||
train_batch_size: 1
|
||||
num_train_workers: 10
|
||||
num_frames: 8
|
||||
max_num_objects: 3
|
||||
base_lr: 5.0e-6
|
||||
vision_lr: 3.0e-06
|
||||
phases_per_epoch: 1
|
||||
num_epochs: 40
|
||||
|
||||
dataset:
|
||||
# PATHS to Dataset
|
||||
img_folder: null # PATH to MOSE JPEGImages folder
|
||||
gt_folder: null # PATH to MOSE Annotations folder
|
||||
file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
|
||||
multiplier: 2
|
||||
|
||||
# Video transforms
|
||||
vos:
|
||||
train_transforms:
|
||||
- _target_: training.dataset.transforms.ComposeAPI
|
||||
transforms:
|
||||
- _target_: training.dataset.transforms.RandomHorizontalFlip
|
||||
consistent_transform: True
|
||||
- _target_: training.dataset.transforms.RandomAffine
|
||||
degrees: 25
|
||||
shear: 20
|
||||
image_interpolation: bilinear
|
||||
consistent_transform: True
|
||||
- _target_: training.dataset.transforms.RandomResizeAPI
|
||||
sizes: ${scratch.resolution}
|
||||
square: true
|
||||
consistent_transform: True
|
||||
- _target_: training.dataset.transforms.ColorJitter
|
||||
consistent_transform: True
|
||||
brightness: 0.1
|
||||
contrast: 0.03
|
||||
saturation: 0.03
|
||||
hue: null
|
||||
- _target_: training.dataset.transforms.RandomGrayscale
|
||||
p: 0.05
|
||||
consistent_transform: True
|
||||
- _target_: training.dataset.transforms.ColorJitter
|
||||
consistent_transform: False
|
||||
brightness: 0.1
|
||||
contrast: 0.05
|
||||
saturation: 0.05
|
||||
hue: null
|
||||
- _target_: training.dataset.transforms.ToTensorAPI
|
||||
- _target_: training.dataset.transforms.NormalizeAPI
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
|
||||
trainer:
|
||||
_target_: training.trainer.Trainer
|
||||
mode: train_only
|
||||
max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
|
||||
accelerator: cuda
|
||||
seed_value: 123
|
||||
|
||||
model:
|
||||
_target_: training.model.sam2.SAM2Train
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 112
|
||||
num_heads: 2
|
||||
drop_path_rate: 0.1
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [896, 448, 224, 112]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: ${scratch.resolution}
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
# compile_image_encoder: False
|
||||
|
||||
####### Training specific params #######
|
||||
# box/point input and corrections
|
||||
prob_to_use_pt_input_for_train: 0.5
|
||||
prob_to_use_pt_input_for_eval: 0.0
|
||||
prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points
|
||||
prob_to_use_box_input_for_eval: 0.0
|
||||
prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors
|
||||
num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame)
|
||||
num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame
|
||||
rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2
|
||||
add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
|
||||
# maximum 2 initial conditioning frames
|
||||
num_init_cond_frames_for_train: 2
|
||||
rand_init_cond_frames_for_train: True # random 1~2
|
||||
num_correction_pt_per_frame: 7
|
||||
use_act_ckpt_iterative_pt_sampling: false
|
||||
|
||||
|
||||
|
||||
num_init_cond_frames_for_eval: 1 # only mask on the first frame
|
||||
forward_backbone_per_frame_for_eval: True
|
||||
|
||||
|
||||
data:
|
||||
train:
|
||||
_target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
|
||||
phases_per_epoch: ${scratch.phases_per_epoch}
|
||||
batch_sizes:
|
||||
- ${scratch.train_batch_size}
|
||||
|
||||
datasets:
|
||||
- _target_: training.dataset.utils.RepeatFactorWrapper
|
||||
dataset:
|
||||
_target_: training.dataset.utils.ConcatDataset
|
||||
datasets:
|
||||
- _target_: training.dataset.vos_dataset.VOSDataset
|
||||
transforms: ${vos.train_transforms}
|
||||
training: true
|
||||
video_dataset:
|
||||
_target_: training.dataset.vos_raw_dataset.PNGRawDataset
|
||||
img_folder: ${dataset.img_folder}
|
||||
gt_folder: ${dataset.gt_folder}
|
||||
file_list_txt: ${dataset.file_list_txt}
|
||||
sampler:
|
||||
_target_: training.dataset.vos_sampler.RandomUniformSampler
|
||||
num_frames: ${scratch.num_frames}
|
||||
max_num_objects: ${scratch.max_num_objects}
|
||||
multiplier: ${dataset.multiplier}
|
||||
shuffle: True
|
||||
num_workers: ${scratch.num_train_workers}
|
||||
pin_memory: True
|
||||
drop_last: True
|
||||
collate_fn:
|
||||
_target_: training.utils.data_utils.collate_fn
|
||||
_partial_: true
|
||||
dict_key: all
|
||||
|
||||
optim:
|
||||
amp:
|
||||
enabled: True
|
||||
amp_dtype: bfloat16
|
||||
|
||||
optimizer:
|
||||
_target_: torch.optim.AdamW
|
||||
|
||||
gradient_clip:
|
||||
_target_: training.optimizer.GradientClipper
|
||||
max_norm: 0.1
|
||||
norm_type: 2
|
||||
|
||||
param_group_modifiers:
|
||||
- _target_: training.optimizer.layer_decay_param_modifier
|
||||
_partial_: True
|
||||
layer_decay_value: 0.9
|
||||
apply_to: 'image_encoder.trunk'
|
||||
overrides:
|
||||
- pattern: '*pos_embed*'
|
||||
value: 1.0
|
||||
|
||||
options:
|
||||
lr:
|
||||
- scheduler:
|
||||
_target_: fvcore.common.param_scheduler.CosineParamScheduler
|
||||
start_value: ${scratch.base_lr}
|
||||
end_value: ${divide:${scratch.base_lr},10}
|
||||
- scheduler:
|
||||
_target_: fvcore.common.param_scheduler.CosineParamScheduler
|
||||
start_value: ${scratch.vision_lr}
|
||||
end_value: ${divide:${scratch.vision_lr},10}
|
||||
param_names:
|
||||
- 'image_encoder.*'
|
||||
weight_decay:
|
||||
- scheduler:
|
||||
_target_: fvcore.common.param_scheduler.ConstantParamScheduler
|
||||
value: 0.1
|
||||
- scheduler:
|
||||
_target_: fvcore.common.param_scheduler.ConstantParamScheduler
|
||||
value: 0.0
|
||||
param_names:
|
||||
- '*bias*'
|
||||
module_cls_names: ['torch.nn.LayerNorm']
|
||||
|
||||
loss:
|
||||
all:
|
||||
_target_: training.loss_fns.MultiStepMultiMasksAndIous
|
||||
weight_dict:
|
||||
loss_mask: 20
|
||||
loss_dice: 1
|
||||
loss_iou: 1
|
||||
loss_class: 1
|
||||
supervise_all_iou: true
|
||||
iou_use_l1_loss: true
|
||||
pred_obj_scores: true
|
||||
focal_gamma_obj_score: 0.0
|
||||
focal_alpha_obj_score: -1.0
|
||||
|
||||
distributed:
|
||||
backend: nccl
|
||||
find_unused_parameters: True
|
||||
|
||||
logging:
|
||||
tensorboard_writer:
|
||||
_target_: training.utils.logger.make_tensorboard_logger
|
||||
log_dir: ${launcher.experiment_log_dir}/tensorboard
|
||||
flush_secs: 120
|
||||
should_log: True
|
||||
log_dir: ${launcher.experiment_log_dir}/logs
|
||||
log_freq: 10
|
||||
|
||||
# initialize from a SAM 2 checkpoint
|
||||
checkpoint:
|
||||
save_dir: ${launcher.experiment_log_dir}/checkpoints
|
||||
save_freq: 0 # 0 only last checkpoint is saved.
|
||||
model_weight_initializer:
|
||||
_partial_: True
|
||||
_target_: training.utils.checkpoint_utils.load_state_dict_into_model
|
||||
strict: True
|
||||
ignore_unexpected_keys: null
|
||||
ignore_missing_keys: null
|
||||
|
||||
state_dict:
|
||||
_target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
|
||||
checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
|
||||
ckpt_state_dict_keys: ['model']
|
||||
|
||||
launcher:
|
||||
num_nodes: 1
|
||||
gpus_per_node: 8
|
||||
experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
|
||||
|
||||
# SLURM args if running on a cluster
|
||||
submitit:
|
||||
partition: null
|
||||
account: null
|
||||
qos: null
|
||||
cpus_per_task: 10
|
||||
use_cluster: false
|
||||
timeout_hour: 24
|
||||
name: null
|
||||
port_range: [10000, 65000]
|
||||
|
113
sam2/sam2/configs/sam2/sam2_hiera_b+.yaml
Normal file
113
sam2/sam2/configs/sam2/sam2_hiera_b+.yaml
Normal file
@@ -0,0 +1,113 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 112
|
||||
num_heads: 2
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [896, 448, 224, 112]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: false
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
117
sam2/sam2/configs/sam2/sam2_hiera_l.yaml
Normal file
117
sam2/sam2/configs/sam2/sam2_hiera_l.yaml
Normal file
@@ -0,0 +1,117 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 144
|
||||
num_heads: 2
|
||||
stages: [2, 6, 36, 4]
|
||||
global_att_blocks: [23, 33, 43]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
window_spec: [8, 4, 16, 8]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [1152, 576, 288, 144]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: false
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
116
sam2/sam2/configs/sam2/sam2_hiera_s.yaml
Normal file
116
sam2/sam2/configs/sam2/sam2_hiera_s.yaml
Normal file
@@ -0,0 +1,116 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 11, 2]
|
||||
global_att_blocks: [7, 10, 13]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: false
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
118
sam2/sam2/configs/sam2/sam2_hiera_t.yaml
Normal file
118
sam2/sam2/configs/sam2/sam2_hiera_t.yaml
Normal file
@@ -0,0 +1,118 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 7, 2]
|
||||
global_att_blocks: [5, 7, 9]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
# SAM decoder
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: false
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
# HieraT does not currently support compilation, should always be set to False
|
||||
compile_image_encoder: False
|
125
sam2/sam2/configs/samurai/sam2.1_hiera_b+.yaml
Normal file
125
sam2/sam2/configs/samurai/sam2.1_hiera_b+.yaml
Normal file
@@ -0,0 +1,125 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 112
|
||||
num_heads: 2
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [896, 448, 224, 112]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
||||
# SAMURAI
|
||||
samurai_mode: true
|
||||
stable_frames_threshold: 15
|
||||
stable_ious_threshold: 0.3
|
||||
min_obj_score_logits: -1
|
||||
kf_score_weight: 0.15
|
||||
memory_bank_iou_threshold: 0.5
|
||||
memory_bank_obj_score_threshold: 0.0
|
||||
memory_bank_kf_score_threshold: 0.0
|
129
sam2/sam2/configs/samurai/sam2.1_hiera_l.yaml
Normal file
129
sam2/sam2/configs/samurai/sam2.1_hiera_l.yaml
Normal file
@@ -0,0 +1,129 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 144
|
||||
num_heads: 2
|
||||
stages: [2, 6, 36, 4]
|
||||
global_att_blocks: [23, 33, 43]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
window_spec: [8, 4, 16, 8]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [1152, 576, 288, 144]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
||||
# SAMURAI
|
||||
samurai_mode: true
|
||||
stable_frames_threshold: 15
|
||||
stable_ious_threshold: 0.3
|
||||
min_obj_score_logits: -1
|
||||
kf_score_weight: 0.15
|
||||
memory_bank_iou_threshold: 0.5
|
||||
memory_bank_obj_score_threshold: 0.0
|
||||
memory_bank_kf_score_threshold: 0.0
|
128
sam2/sam2/configs/samurai/sam2.1_hiera_s.yaml
Normal file
128
sam2/sam2/configs/samurai/sam2.1_hiera_s.yaml
Normal file
@@ -0,0 +1,128 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 11, 2]
|
||||
global_att_blocks: [7, 10, 13]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
compile_image_encoder: False
|
||||
# SAMURAI
|
||||
samurai_mode: true
|
||||
stable_frames_threshold: 15
|
||||
stable_ious_threshold: 0.3
|
||||
min_obj_score_logits: -1
|
||||
kf_score_weight: 0.15
|
||||
memory_bank_iou_threshold: 0.5
|
||||
memory_bank_obj_score_threshold: 0.0
|
||||
memory_bank_kf_score_threshold: 0.0
|
130
sam2/sam2/configs/samurai/sam2.1_hiera_t.yaml
Normal file
130
sam2/sam2/configs/samurai/sam2.1_hiera_t.yaml
Normal file
@@ -0,0 +1,130 @@
|
||||
# @package _global_
|
||||
|
||||
# Model
|
||||
model:
|
||||
_target_: sam2.modeling.sam2_base.SAM2Base
|
||||
image_encoder:
|
||||
_target_: sam2.modeling.backbones.image_encoder.ImageEncoder
|
||||
scalp: 1
|
||||
trunk:
|
||||
_target_: sam2.modeling.backbones.hieradet.Hiera
|
||||
embed_dim: 96
|
||||
num_heads: 1
|
||||
stages: [1, 2, 7, 2]
|
||||
global_att_blocks: [5, 7, 9]
|
||||
window_pos_embed_bkg_spatial_size: [7, 7]
|
||||
neck:
|
||||
_target_: sam2.modeling.backbones.image_encoder.FpnNeck
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 256
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
d_model: 256
|
||||
backbone_channel_list: [768, 384, 192, 96]
|
||||
fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
|
||||
fpn_interp_model: nearest
|
||||
|
||||
memory_attention:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttention
|
||||
d_model: 256
|
||||
pos_enc_at_input: true
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_attention.MemoryAttentionLayer
|
||||
activation: relu
|
||||
dim_feedforward: 2048
|
||||
dropout: 0.1
|
||||
pos_enc_at_attn: false
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
d_model: 256
|
||||
pos_enc_at_cross_attn_keys: true
|
||||
pos_enc_at_cross_attn_queries: false
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
dropout: 0.1
|
||||
kv_in_dim: 64
|
||||
num_layers: 4
|
||||
|
||||
memory_encoder:
|
||||
_target_: sam2.modeling.memory_encoder.MemoryEncoder
|
||||
out_dim: 64
|
||||
position_encoding:
|
||||
_target_: sam2.modeling.position_encoding.PositionEmbeddingSine
|
||||
num_pos_feats: 64
|
||||
normalize: true
|
||||
scale: null
|
||||
temperature: 10000
|
||||
mask_downsampler:
|
||||
_target_: sam2.modeling.memory_encoder.MaskDownSampler
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
padding: 1
|
||||
fuser:
|
||||
_target_: sam2.modeling.memory_encoder.Fuser
|
||||
layer:
|
||||
_target_: sam2.modeling.memory_encoder.CXBlock
|
||||
dim: 256
|
||||
kernel_size: 7
|
||||
padding: 3
|
||||
layer_scale_init_value: 1e-6
|
||||
use_dwconv: True # depth-wise convs
|
||||
num_layers: 2
|
||||
|
||||
num_maskmem: 7
|
||||
image_size: 1024
|
||||
# apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
|
||||
# SAM decoder
|
||||
sigmoid_scale_for_mem_enc: 20.0
|
||||
sigmoid_bias_for_mem_enc: -10.0
|
||||
use_mask_input_as_output_without_sam: true
|
||||
# Memory
|
||||
directly_add_no_mem_embed: true
|
||||
no_obj_embed_spatial: true
|
||||
# use high-resolution feature map in the SAM mask decoder
|
||||
use_high_res_features_in_sam: true
|
||||
# output 3 masks on the first click on initial conditioning frames
|
||||
multimask_output_in_sam: true
|
||||
# SAM heads
|
||||
iou_prediction_use_sigmoid: True
|
||||
# cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
||||
use_obj_ptrs_in_encoder: true
|
||||
add_tpos_enc_to_obj_ptrs: true
|
||||
proj_tpos_enc_in_obj_ptrs: true
|
||||
use_signed_tpos_enc_to_obj_ptrs: true
|
||||
only_obj_ptrs_in_the_past_for_eval: true
|
||||
# object occlusion prediction
|
||||
pred_obj_scores: true
|
||||
pred_obj_scores_mlp: true
|
||||
fixed_no_obj_ptr: true
|
||||
# multimask tracking settings
|
||||
multimask_output_for_tracking: true
|
||||
use_multimask_token_for_obj_ptr: true
|
||||
multimask_min_pt_num: 0
|
||||
multimask_max_pt_num: 1
|
||||
use_mlp_for_obj_ptr_proj: true
|
||||
# Compilation flag
|
||||
# HieraT does not currently support compilation, should always be set to False
|
||||
compile_image_encoder: False
|
||||
# SAMURAI
|
||||
samurai_mode: true
|
||||
stable_frames_threshold: 15
|
||||
stable_ious_threshold: 0.3
|
||||
min_obj_score_logits: -1
|
||||
kf_score_weight: 0.15
|
||||
memory_bank_iou_threshold: 0.5
|
||||
memory_bank_obj_score_threshold: 0.0
|
||||
memory_bank_kf_score_threshold: 0.0
|
289
sam2/sam2/csrc/connected_components.cu
Normal file
289
sam2/sam2/csrc/connected_components.cu
Normal file
@@ -0,0 +1,289 @@
|
||||
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
// All rights reserved.
|
||||
|
||||
// This source code is licensed under the license found in the
|
||||
// LICENSE file in the root directory of this source tree.
|
||||
|
||||
// adapted from https://github.com/zsef123/Connected_components_PyTorch
|
||||
// with license found in the LICENSE_cctorch file in the root directory.
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
#include <torch/script.h>
|
||||
#include <vector>
|
||||
|
||||
// 2d
|
||||
#define BLOCK_ROWS 16
|
||||
#define BLOCK_COLS 16
|
||||
|
||||
namespace cc2d {
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
|
||||
return (bitmap >> pos) & 1;
|
||||
}
|
||||
|
||||
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
|
||||
while (s_buf[n] != n)
|
||||
n = s_buf[n];
|
||||
return n;
|
||||
}
|
||||
|
||||
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
|
||||
const int32_t id = n;
|
||||
while (s_buf[n] != n) {
|
||||
n = s_buf[n];
|
||||
s_buf[id] = n;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
|
||||
bool done;
|
||||
do {
|
||||
a = find(s_buf, a);
|
||||
b = find(s_buf, b);
|
||||
|
||||
if (a < b) {
|
||||
int32_t old = atomicMin(s_buf + b, a);
|
||||
done = (old == b);
|
||||
b = old;
|
||||
} else if (b < a) {
|
||||
int32_t old = atomicMin(s_buf + a, b);
|
||||
done = (old == a);
|
||||
a = old;
|
||||
} else
|
||||
done = true;
|
||||
|
||||
} while (!done);
|
||||
}
|
||||
|
||||
__global__ void
|
||||
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row < H && col < W)
|
||||
label[idx] = idx;
|
||||
}
|
||||
|
||||
__global__ void
|
||||
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row >= H || col >= W)
|
||||
return;
|
||||
|
||||
uint32_t P = 0;
|
||||
|
||||
if (img[idx])
|
||||
P |= 0x777;
|
||||
if (row + 1 < H && img[idx + W])
|
||||
P |= 0x777 << 4;
|
||||
if (col + 1 < W && img[idx + 1])
|
||||
P |= 0x777 << 1;
|
||||
|
||||
if (col == 0)
|
||||
P &= 0xEEEE;
|
||||
if (col + 1 >= W)
|
||||
P &= 0x3333;
|
||||
else if (col + 2 >= W)
|
||||
P &= 0x7777;
|
||||
|
||||
if (row == 0)
|
||||
P &= 0xFFF0;
|
||||
if (row + 1 >= H)
|
||||
P &= 0xFF;
|
||||
|
||||
if (P > 0) {
|
||||
// If need check about top-left pixel(if flag the first bit) and hit the
|
||||
// top-left pixel
|
||||
if (hasBit(P, 0) && img[idx - W - 1]) {
|
||||
union_(label, idx, idx - 2 * W - 2); // top left block
|
||||
}
|
||||
|
||||
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
|
||||
union_(label, idx, idx - 2 * W); // top bottom block
|
||||
|
||||
if (hasBit(P, 3) && img[idx + 2 - W])
|
||||
union_(label, idx, idx - 2 * W + 2); // top right block
|
||||
|
||||
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
|
||||
union_(label, idx, idx - 2); // just left block
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row < H && col < W)
|
||||
find_n_compress(label, idx);
|
||||
}
|
||||
|
||||
__global__ void final_labeling(
|
||||
const uint8_t* img,
|
||||
int32_t* label,
|
||||
const int32_t W,
|
||||
const int32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row >= H || col >= W)
|
||||
return;
|
||||
|
||||
int32_t y = label[idx] + 1;
|
||||
|
||||
if (img[idx])
|
||||
label[idx] = y;
|
||||
else
|
||||
label[idx] = 0;
|
||||
|
||||
if (col + 1 < W) {
|
||||
if (img[idx + 1])
|
||||
label[idx + 1] = y;
|
||||
else
|
||||
label[idx + 1] = 0;
|
||||
|
||||
if (row + 1 < H) {
|
||||
if (img[idx + W + 1])
|
||||
label[idx + W + 1] = y;
|
||||
else
|
||||
label[idx + W + 1] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (row + 1 < H) {
|
||||
if (img[idx + W])
|
||||
label[idx + W] = y;
|
||||
else
|
||||
label[idx + W] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void init_counting(
|
||||
const int32_t* label,
|
||||
int32_t* count_init,
|
||||
const int32_t W,
|
||||
const int32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row >= H || col >= W)
|
||||
return;
|
||||
|
||||
int32_t y = label[idx];
|
||||
if (y > 0) {
|
||||
int32_t count_idx = y - 1;
|
||||
atomicAdd(count_init + count_idx, 1);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void final_counting(
|
||||
const int32_t* label,
|
||||
const int32_t* count_init,
|
||||
int32_t* count_final,
|
||||
const int32_t W,
|
||||
const int32_t H) {
|
||||
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
||||
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
||||
const uint32_t idx = row * W + col;
|
||||
|
||||
if (row >= H || col >= W)
|
||||
return;
|
||||
|
||||
int32_t y = label[idx];
|
||||
if (y > 0) {
|
||||
int32_t count_idx = y - 1;
|
||||
count_final[idx] = count_init[count_idx];
|
||||
} else {
|
||||
count_final[idx] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cc2d
|
||||
|
||||
std::vector<torch::Tensor> get_connected_componnets(
|
||||
const torch::Tensor& inputs) {
|
||||
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
|
||||
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
|
||||
AT_ASSERTM(
|
||||
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
|
||||
|
||||
const uint32_t N = inputs.size(0);
|
||||
const uint32_t C = inputs.size(1);
|
||||
const uint32_t H = inputs.size(2);
|
||||
const uint32_t W = inputs.size(3);
|
||||
|
||||
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
|
||||
AT_ASSERTM((H % 2) == 0, "height must be an even number");
|
||||
AT_ASSERTM((W % 2) == 0, "width must be an even number");
|
||||
|
||||
// label must be uint32_t
|
||||
auto label_options =
|
||||
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
|
||||
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
|
||||
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
|
||||
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
|
||||
|
||||
dim3 grid = dim3(
|
||||
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
|
||||
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
|
||||
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
|
||||
dim3 grid_count =
|
||||
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
|
||||
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
uint32_t offset = n * H * W;
|
||||
|
||||
cc2d::init_labeling<<<grid, block, 0, stream>>>(
|
||||
labels.data_ptr<int32_t>() + offset, W, H);
|
||||
cc2d::merge<<<grid, block, 0, stream>>>(
|
||||
inputs.data_ptr<uint8_t>() + offset,
|
||||
labels.data_ptr<int32_t>() + offset,
|
||||
W,
|
||||
H);
|
||||
cc2d::compression<<<grid, block, 0, stream>>>(
|
||||
labels.data_ptr<int32_t>() + offset, W, H);
|
||||
cc2d::final_labeling<<<grid, block, 0, stream>>>(
|
||||
inputs.data_ptr<uint8_t>() + offset,
|
||||
labels.data_ptr<int32_t>() + offset,
|
||||
W,
|
||||
H);
|
||||
|
||||
// get the counting of each pixel
|
||||
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
|
||||
labels.data_ptr<int32_t>() + offset,
|
||||
counts_init.data_ptr<int32_t>() + offset,
|
||||
W,
|
||||
H);
|
||||
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
|
||||
labels.data_ptr<int32_t>() + offset,
|
||||
counts_init.data_ptr<int32_t>() + offset,
|
||||
counts_final.data_ptr<int32_t>() + offset,
|
||||
W,
|
||||
H);
|
||||
}
|
||||
|
||||
// returned values are [labels, counts]
|
||||
std::vector<torch::Tensor> outputs;
|
||||
outputs.push_back(labels);
|
||||
outputs.push_back(counts_final);
|
||||
return outputs;
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"get_connected_componnets",
|
||||
&get_connected_componnets,
|
||||
"get_connected_componnets");
|
||||
}
|
5
sam2/sam2/modeling/__init__.py
Normal file
5
sam2/sam2/modeling/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
5
sam2/sam2/modeling/backbones/__init__.py
Normal file
5
sam2/sam2/modeling/backbones/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
317
sam2/sam2/modeling/backbones/hieradet.py
Normal file
317
sam2/sam2/modeling/backbones/hieradet.py
Normal file
@@ -0,0 +1,317 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from functools import partial
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from iopath.common.file_io import g_pathmgr
|
||||
|
||||
from sam2.modeling.backbones.utils import (
|
||||
PatchEmbed,
|
||||
window_partition,
|
||||
window_unpartition,
|
||||
)
|
||||
|
||||
from sam2.modeling.sam2_utils import DropPath, MLP
|
||||
|
||||
|
||||
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
||||
if pool is None:
|
||||
return x
|
||||
# (B, H, W, C) -> (B, C, H, W)
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = pool(x)
|
||||
# (B, C, H', W') -> (B, H', W', C)
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
if norm:
|
||||
x = norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MultiScaleAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: int,
|
||||
num_heads: int,
|
||||
q_pool: nn.Module = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
self.num_heads = num_heads
|
||||
self.q_pool = q_pool
|
||||
self.qkv = nn.Linear(dim, dim_out * 3)
|
||||
self.proj = nn.Linear(dim_out, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (B, H * W, 3, nHead, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
||||
# q, k, v with shape (B, H * W, nheads, C)
|
||||
q, k, v = torch.unbind(qkv, 2)
|
||||
|
||||
# Q pooling (for downsample at stage changes)
|
||||
if self.q_pool:
|
||||
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
||||
H, W = q.shape[1:3] # downsampled shape
|
||||
q = q.reshape(B, H * W, self.num_heads, -1)
|
||||
|
||||
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
||||
x = F.scaled_dot_product_attention(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
)
|
||||
# Transpose back
|
||||
x = x.transpose(1, 2)
|
||||
x = x.reshape(B, H, W, -1)
|
||||
|
||||
x = self.proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MultiScaleBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
dim_out: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
drop_path: float = 0.0,
|
||||
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
||||
q_stride: Tuple[int, int] = None,
|
||||
act_layer: nn.Module = nn.GELU,
|
||||
window_size: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if isinstance(norm_layer, str):
|
||||
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
||||
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
self.norm1 = norm_layer(dim)
|
||||
|
||||
self.window_size = window_size
|
||||
|
||||
self.pool, self.q_stride = None, q_stride
|
||||
if self.q_stride:
|
||||
self.pool = nn.MaxPool2d(
|
||||
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
||||
)
|
||||
|
||||
self.attn = MultiScaleAttention(
|
||||
dim,
|
||||
dim_out,
|
||||
num_heads=num_heads,
|
||||
q_pool=self.pool,
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
self.norm2 = norm_layer(dim_out)
|
||||
self.mlp = MLP(
|
||||
dim_out,
|
||||
int(dim_out * mlp_ratio),
|
||||
dim_out,
|
||||
num_layers=2,
|
||||
activation=act_layer,
|
||||
)
|
||||
|
||||
if dim != dim_out:
|
||||
self.proj = nn.Linear(dim, dim_out)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x # B, H, W, C
|
||||
x = self.norm1(x)
|
||||
|
||||
# Skip connection
|
||||
if self.dim != self.dim_out:
|
||||
shortcut = do_pool(self.proj(x), self.pool)
|
||||
|
||||
# Window partition
|
||||
window_size = self.window_size
|
||||
if window_size > 0:
|
||||
H, W = x.shape[1], x.shape[2]
|
||||
x, pad_hw = window_partition(x, window_size)
|
||||
|
||||
# Window Attention + Q Pooling (if stage change)
|
||||
x = self.attn(x)
|
||||
if self.q_stride:
|
||||
# Shapes have changed due to Q pooling
|
||||
window_size = self.window_size // self.q_stride[0]
|
||||
H, W = shortcut.shape[1:3]
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
pad_hw = (H + pad_h, W + pad_w)
|
||||
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
||||
|
||||
x = shortcut + self.drop_path(x)
|
||||
# MLP
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class Hiera(nn.Module):
|
||||
"""
|
||||
Reference: https://arxiv.org/abs/2306.00989
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int = 96, # initial embed dim
|
||||
num_heads: int = 1, # initial number of heads
|
||||
drop_path_rate: float = 0.0, # stochastic depth
|
||||
q_pool: int = 3, # number of q_pool stages
|
||||
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
||||
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
||||
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
||||
head_mul: float = 2.0, # head_mul factor at stage shift
|
||||
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
||||
# window size per stage, when not using global att.
|
||||
window_spec: Tuple[int, ...] = (
|
||||
8,
|
||||
4,
|
||||
14,
|
||||
7,
|
||||
),
|
||||
# global attn in these blocks
|
||||
global_att_blocks: Tuple[int, ...] = (
|
||||
12,
|
||||
16,
|
||||
20,
|
||||
),
|
||||
weights_path=None,
|
||||
return_interm_layers=True, # return feats from every stage
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
assert len(stages) == len(window_spec)
|
||||
self.window_spec = window_spec
|
||||
|
||||
depth = sum(stages)
|
||||
self.q_stride = q_stride
|
||||
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
||||
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
||||
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
||||
self.return_interm_layers = return_interm_layers
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
# Which blocks have global att?
|
||||
self.global_att_blocks = global_att_blocks
|
||||
|
||||
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
||||
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
||||
)
|
||||
self.pos_embed_window = nn.Parameter(
|
||||
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
||||
)
|
||||
|
||||
dpr = [
|
||||
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
||||
] # stochastic depth decay rule
|
||||
|
||||
cur_stage = 1
|
||||
self.blocks = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
dim_out = embed_dim
|
||||
# lags by a block, so first block of
|
||||
# next stage uses an initial window size
|
||||
# of previous stage and final window size of current stage
|
||||
window_size = self.window_spec[cur_stage - 1]
|
||||
|
||||
if self.global_att_blocks is not None:
|
||||
window_size = 0 if i in self.global_att_blocks else window_size
|
||||
|
||||
if i - 1 in self.stage_ends:
|
||||
dim_out = int(embed_dim * dim_mul)
|
||||
num_heads = int(num_heads * head_mul)
|
||||
cur_stage += 1
|
||||
|
||||
block = MultiScaleBlock(
|
||||
dim=embed_dim,
|
||||
dim_out=dim_out,
|
||||
num_heads=num_heads,
|
||||
drop_path=dpr[i],
|
||||
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
||||
window_size=window_size,
|
||||
)
|
||||
|
||||
embed_dim = dim_out
|
||||
self.blocks.append(block)
|
||||
|
||||
self.channel_list = (
|
||||
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
||||
if return_interm_layers
|
||||
else [self.blocks[-1].dim_out]
|
||||
)
|
||||
|
||||
if weights_path is not None:
|
||||
with g_pathmgr.open(weights_path, "rb") as f:
|
||||
chkpt = torch.load(f, map_location="cpu")
|
||||
logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
|
||||
|
||||
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
||||
h, w = hw
|
||||
window_embed = self.pos_embed_window
|
||||
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
||||
pos_embed = pos_embed + window_embed.tile(
|
||||
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
||||
)
|
||||
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
||||
return pos_embed
|
||||
|
||||
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
x = self.patch_embed(x)
|
||||
# x: (B, H, W, C)
|
||||
|
||||
# Add pos embed
|
||||
x = x + self._get_pos_embed(x.shape[1:3])
|
||||
|
||||
outputs = []
|
||||
for i, blk in enumerate(self.blocks):
|
||||
x = blk(x)
|
||||
if (i == self.stage_ends[-1]) or (
|
||||
i in self.stage_ends and self.return_interm_layers
|
||||
):
|
||||
feats = x.permute(0, 3, 1, 2)
|
||||
outputs.append(feats)
|
||||
|
||||
return outputs
|
||||
|
||||
def get_layer_id(self, layer_name):
|
||||
# https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
|
||||
num_layers = self.get_num_layers()
|
||||
|
||||
if layer_name.find("rel_pos") != -1:
|
||||
return num_layers + 1
|
||||
elif layer_name.find("pos_embed") != -1:
|
||||
return 0
|
||||
elif layer_name.find("patch_embed") != -1:
|
||||
return 0
|
||||
elif layer_name.find("blocks") != -1:
|
||||
return int(layer_name.split("blocks")[1].split(".")[1]) + 1
|
||||
else:
|
||||
return num_layers + 1
|
||||
|
||||
def get_num_layers(self) -> int:
|
||||
return len(self.blocks)
|
134
sam2/sam2/modeling/backbones/image_encoder.py
Normal file
134
sam2/sam2/modeling/backbones/image_encoder.py
Normal file
@@ -0,0 +1,134 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class ImageEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
trunk: nn.Module,
|
||||
neck: nn.Module,
|
||||
scalp: int = 0,
|
||||
):
|
||||
super().__init__()
|
||||
self.trunk = trunk
|
||||
self.neck = neck
|
||||
self.scalp = scalp
|
||||
assert (
|
||||
self.trunk.channel_list == self.neck.backbone_channel_list
|
||||
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
||||
|
||||
def forward(self, sample: torch.Tensor):
|
||||
# Forward through backbone
|
||||
features, pos = self.neck(self.trunk(sample))
|
||||
if self.scalp > 0:
|
||||
# Discard the lowest resolution features
|
||||
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
||||
|
||||
src = features[-1]
|
||||
output = {
|
||||
"vision_features": src,
|
||||
"vision_pos_enc": pos,
|
||||
"backbone_fpn": features,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
class FpnNeck(nn.Module):
|
||||
"""
|
||||
A modified variant of Feature Pyramid Network (FPN) neck
|
||||
(we remove output conv and also do bicubic interpolation similar to ViT
|
||||
pos embed interpolation)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
position_encoding: nn.Module,
|
||||
d_model: int,
|
||||
backbone_channel_list: List[int],
|
||||
kernel_size: int = 1,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
fpn_interp_model: str = "bilinear",
|
||||
fuse_type: str = "sum",
|
||||
fpn_top_down_levels: Optional[List[int]] = None,
|
||||
):
|
||||
"""Initialize the neck
|
||||
:param trunk: the backbone
|
||||
:param position_encoding: the positional encoding to use
|
||||
:param d_model: the dimension of the model
|
||||
:param neck_norm: the normalization to use
|
||||
"""
|
||||
super().__init__()
|
||||
self.position_encoding = position_encoding
|
||||
self.convs = nn.ModuleList()
|
||||
self.backbone_channel_list = backbone_channel_list
|
||||
self.d_model = d_model
|
||||
for dim in backbone_channel_list:
|
||||
current = nn.Sequential()
|
||||
current.add_module(
|
||||
"conv",
|
||||
nn.Conv2d(
|
||||
in_channels=dim,
|
||||
out_channels=d_model,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
),
|
||||
)
|
||||
|
||||
self.convs.append(current)
|
||||
self.fpn_interp_model = fpn_interp_model
|
||||
assert fuse_type in ["sum", "avg"]
|
||||
self.fuse_type = fuse_type
|
||||
|
||||
# levels to have top-down features in its outputs
|
||||
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
||||
# have top-down propagation, while outputs of level 0 and level 1 have only
|
||||
# lateral features from the same backbone level.
|
||||
if fpn_top_down_levels is None:
|
||||
# default is to have top-down features on all levels
|
||||
fpn_top_down_levels = range(len(self.convs))
|
||||
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
||||
|
||||
def forward(self, xs: List[torch.Tensor]):
|
||||
|
||||
out = [None] * len(self.convs)
|
||||
pos = [None] * len(self.convs)
|
||||
assert len(xs) == len(self.convs)
|
||||
# fpn forward pass
|
||||
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
||||
prev_features = None
|
||||
# forward in top-down order (from low to high resolution)
|
||||
n = len(self.convs) - 1
|
||||
for i in range(n, -1, -1):
|
||||
x = xs[i]
|
||||
lateral_features = self.convs[n - i](x)
|
||||
if i in self.fpn_top_down_levels and prev_features is not None:
|
||||
top_down_features = F.interpolate(
|
||||
prev_features.to(dtype=torch.float32),
|
||||
scale_factor=2.0,
|
||||
mode=self.fpn_interp_model,
|
||||
align_corners=(
|
||||
None if self.fpn_interp_model == "nearest" else False
|
||||
),
|
||||
antialias=False,
|
||||
)
|
||||
prev_features = lateral_features + top_down_features
|
||||
if self.fuse_type == "avg":
|
||||
prev_features /= 2
|
||||
else:
|
||||
prev_features = lateral_features
|
||||
x_out = prev_features
|
||||
out[i] = x_out
|
||||
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
||||
|
||||
return out, pos
|
95
sam2/sam2/modeling/backbones/utils.py
Normal file
95
sam2/sam2/modeling/backbones/utils.py
Normal file
@@ -0,0 +1,95 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Some utilities for backbones, in particular for windowing"""
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Partition into non-overlapping windows with padding if needed.
|
||||
Args:
|
||||
x (tensor): input tokens with [B, H, W, C].
|
||||
window_size (int): window size.
|
||||
Returns:
|
||||
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||
(Hp, Wp): padded height and width before partition
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
if pad_h > 0 or pad_w > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = (
|
||||
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
)
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(windows, window_size, pad_hw, hw):
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
Args:
|
||||
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||
hw (Tuple): original height and width (H, W) before padding.
|
||||
Returns:
|
||||
x: unpartitioned sequences with [B, H, W, C].
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(
|
||||
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
||||
)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
|
||||
if Hp > H or Wp > W:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Image to Patch Embedding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Tuple[int, ...] = (7, 7),
|
||||
stride: Tuple[int, ...] = (4, 4),
|
||||
padding: Tuple[int, ...] = (3, 3),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
kernel_size (Tuple): kernel size of the projection layer.
|
||||
stride (Tuple): stride of the projection layer.
|
||||
padding (Tuple): padding size of the projection layer.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
self.proj = nn.Conv2d(
|
||||
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
# B C H W -> B H W C
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
return x
|
169
sam2/sam2/modeling/memory_attention.py
Normal file
169
sam2/sam2/modeling/memory_attention.py
Normal file
@@ -0,0 +1,169 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn, Tensor
|
||||
|
||||
from sam2.modeling.sam.transformer import RoPEAttention
|
||||
|
||||
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
|
||||
|
||||
|
||||
class MemoryAttentionLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
activation: str,
|
||||
cross_attention: nn.Module,
|
||||
d_model: int,
|
||||
dim_feedforward: int,
|
||||
dropout: float,
|
||||
pos_enc_at_attn: bool,
|
||||
pos_enc_at_cross_attn_keys: bool,
|
||||
pos_enc_at_cross_attn_queries: bool,
|
||||
self_attention: nn.Module,
|
||||
):
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.dim_feedforward = dim_feedforward
|
||||
self.dropout_value = dropout
|
||||
self.self_attn = self_attention
|
||||
self.cross_attn_image = cross_attention
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation_str = activation
|
||||
self.activation = get_activation_fn(activation)
|
||||
|
||||
# Where to add pos enc
|
||||
self.pos_enc_at_attn = pos_enc_at_attn
|
||||
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
||||
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
||||
|
||||
def _forward_sa(self, tgt, query_pos):
|
||||
# Self-Attention
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
||||
tgt2 = self.self_attn(q, k, v=tgt2)
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
return tgt
|
||||
|
||||
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
||||
kwds = {}
|
||||
if num_k_exclude_rope > 0:
|
||||
assert isinstance(self.cross_attn_image, RoPEAttention)
|
||||
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
||||
|
||||
# Cross-Attention
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.cross_attn_image(
|
||||
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
||||
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
||||
v=memory,
|
||||
**kwds,
|
||||
)
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
return tgt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
num_k_exclude_rope: int = 0,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# Self-Attn, Cross-Attn
|
||||
tgt = self._forward_sa(tgt, query_pos)
|
||||
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
||||
# MLP
|
||||
tgt2 = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
return tgt
|
||||
|
||||
|
||||
class MemoryAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
pos_enc_at_input: bool,
|
||||
layer: nn.Module,
|
||||
num_layers: int,
|
||||
batch_first: bool = True, # Do layers expect batch first input?
|
||||
):
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.layers = get_clones(layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = nn.LayerNorm(d_model)
|
||||
self.pos_enc_at_input = pos_enc_at_input
|
||||
self.batch_first = batch_first
|
||||
|
||||
def forward(
|
||||
self,
|
||||
curr: torch.Tensor, # self-attention inputs
|
||||
memory: torch.Tensor, # cross-attention inputs
|
||||
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
||||
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
||||
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
||||
):
|
||||
if isinstance(curr, list):
|
||||
assert isinstance(curr_pos, list)
|
||||
assert len(curr) == len(curr_pos) == 1
|
||||
curr, curr_pos = (
|
||||
curr[0],
|
||||
curr_pos[0],
|
||||
)
|
||||
|
||||
assert (
|
||||
curr.shape[1] == memory.shape[1]
|
||||
), "Batch size must be the same for curr and memory"
|
||||
|
||||
output = curr
|
||||
if self.pos_enc_at_input and curr_pos is not None:
|
||||
output = output + 0.1 * curr_pos
|
||||
|
||||
if self.batch_first:
|
||||
# Convert to batch first
|
||||
output = output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
memory = memory.transpose(0, 1)
|
||||
memory_pos = memory_pos.transpose(0, 1)
|
||||
|
||||
for layer in self.layers:
|
||||
kwds = {}
|
||||
if isinstance(layer.cross_attn_image, RoPEAttention):
|
||||
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
||||
|
||||
output = layer(
|
||||
tgt=output,
|
||||
memory=memory,
|
||||
pos=memory_pos,
|
||||
query_pos=curr_pos,
|
||||
**kwds,
|
||||
)
|
||||
normed_output = self.norm(output)
|
||||
|
||||
if self.batch_first:
|
||||
# Convert back to seq first
|
||||
normed_output = normed_output.transpose(0, 1)
|
||||
curr_pos = curr_pos.transpose(0, 1)
|
||||
|
||||
return normed_output
|
181
sam2/sam2/modeling/memory_encoder.py
Normal file
181
sam2/sam2/modeling/memory_encoder.py
Normal file
@@ -0,0 +1,181 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
|
||||
|
||||
|
||||
class MaskDownSampler(nn.Module):
|
||||
"""
|
||||
Progressively downsample a mask by total_stride, each time by stride.
|
||||
Note that LayerNorm is applied per *token*, like in ViT.
|
||||
|
||||
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
||||
In the end, we linearly project to embed_dim channels.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim=256,
|
||||
kernel_size=4,
|
||||
stride=4,
|
||||
padding=0,
|
||||
total_stride=16,
|
||||
activation=nn.GELU,
|
||||
):
|
||||
super().__init__()
|
||||
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
||||
assert stride**num_layers == total_stride
|
||||
self.encoder = nn.Sequential()
|
||||
mask_in_chans, mask_out_chans = 1, 1
|
||||
for _ in range(num_layers):
|
||||
mask_out_chans = mask_in_chans * (stride**2)
|
||||
self.encoder.append(
|
||||
nn.Conv2d(
|
||||
mask_in_chans,
|
||||
mask_out_chans,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.encoder.append(LayerNorm2d(mask_out_chans))
|
||||
self.encoder.append(activation())
|
||||
mask_in_chans = mask_out_chans
|
||||
|
||||
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
||||
|
||||
def forward(self, x):
|
||||
return self.encoder(x)
|
||||
|
||||
|
||||
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
||||
class CXBlock(nn.Module):
|
||||
r"""ConvNeXt Block. There are two equivalent implementations:
|
||||
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
||||
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
||||
We use (2) as we find it slightly faster in PyTorch
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
drop_path (float): Stochastic depth rate. Default: 0.0
|
||||
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
kernel_size=7,
|
||||
padding=3,
|
||||
drop_path=0.0,
|
||||
layer_scale_init_value=1e-6,
|
||||
use_dwconv=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv2d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size=kernel_size,
|
||||
padding=padding,
|
||||
groups=dim if use_dwconv else 1,
|
||||
) # depthwise conv
|
||||
self.norm = LayerNorm2d(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(
|
||||
dim, 4 * dim
|
||||
) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = nn.Linear(4 * dim, dim)
|
||||
self.gamma = (
|
||||
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
||||
if layer_scale_init_value > 0
|
||||
else None
|
||||
)
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
input = x
|
||||
x = self.dwconv(x)
|
||||
x = self.norm(x)
|
||||
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
||||
|
||||
x = input + self.drop_path(x)
|
||||
return x
|
||||
|
||||
|
||||
class Fuser(nn.Module):
|
||||
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
||||
super().__init__()
|
||||
self.proj = nn.Identity()
|
||||
self.layers = get_clones(layer, num_layers)
|
||||
|
||||
if input_projection:
|
||||
assert dim is not None
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
||||
|
||||
def forward(self, x):
|
||||
# normally x: (N, C, H, W)
|
||||
x = self.proj(x)
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class MemoryEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
out_dim,
|
||||
mask_downsampler,
|
||||
fuser,
|
||||
position_encoding,
|
||||
in_dim=256, # in_dim of pix_feats
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.mask_downsampler = mask_downsampler
|
||||
|
||||
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
||||
self.fuser = fuser
|
||||
self.position_encoding = position_encoding
|
||||
self.out_proj = nn.Identity()
|
||||
if out_dim != in_dim:
|
||||
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pix_feat: torch.Tensor,
|
||||
masks: torch.Tensor,
|
||||
skip_mask_sigmoid: bool = False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
## Process masks
|
||||
# sigmoid, so that less domain shift from gt masks which are bool
|
||||
if not skip_mask_sigmoid:
|
||||
masks = F.sigmoid(masks)
|
||||
masks = self.mask_downsampler(masks)
|
||||
|
||||
## Fuse pix_feats and downsampled masks
|
||||
# in case the visual features are on CPU, cast them to CUDA
|
||||
pix_feat = pix_feat.to(masks.device)
|
||||
|
||||
x = self.pix_feat_proj(pix_feat)
|
||||
x = x + masks
|
||||
x = self.fuser(x)
|
||||
x = self.out_proj(x)
|
||||
|
||||
pos = self.position_encoding(x).to(x.dtype)
|
||||
|
||||
return {"vision_features": x, "vision_pos_enc": [pos]}
|
221
sam2/sam2/modeling/position_encoding.py
Normal file
221
sam2/sam2/modeling/position_encoding.py
Normal file
@@ -0,0 +1,221 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class PositionEmbeddingSine(nn.Module):
|
||||
"""
|
||||
This is a more standard version of the position embedding, very similar to the one
|
||||
used by the Attention Is All You Need paper, generalized to work on images.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_pos_feats,
|
||||
temperature: int = 10000,
|
||||
normalize: bool = True,
|
||||
scale: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
||||
self.num_pos_feats = num_pos_feats // 2
|
||||
self.temperature = temperature
|
||||
self.normalize = normalize
|
||||
if scale is not None and normalize is False:
|
||||
raise ValueError("normalize should be True if scale is passed")
|
||||
if scale is None:
|
||||
scale = 2 * math.pi
|
||||
self.scale = scale
|
||||
|
||||
self.cache = {}
|
||||
|
||||
def _encode_xy(self, x, y):
|
||||
# The positions are expected to be normalized
|
||||
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
||||
x_embed = x * self.scale
|
||||
y_embed = y * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, None] / dim_t
|
||||
pos_y = y_embed[:, None] / dim_t
|
||||
pos_x = torch.stack(
|
||||
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
||||
).flatten(1)
|
||||
pos_y = torch.stack(
|
||||
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
||||
).flatten(1)
|
||||
return pos_x, pos_y
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_boxes(self, x, y, w, h):
|
||||
pos_x, pos_y = self._encode_xy(x, y)
|
||||
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
||||
return pos
|
||||
|
||||
encode = encode_boxes # Backwards compatibility
|
||||
|
||||
@torch.no_grad()
|
||||
def encode_points(self, x, y, labels):
|
||||
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
||||
assert bx == by and nx == ny and bx == bl and nx == nl
|
||||
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
||||
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
||||
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
||||
return pos
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, x: torch.Tensor):
|
||||
cache_key = (x.shape[-2], x.shape[-1])
|
||||
if cache_key in self.cache:
|
||||
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
||||
y_embed = (
|
||||
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
||||
.view(1, -1, 1)
|
||||
.repeat(x.shape[0], 1, x.shape[-1])
|
||||
)
|
||||
x_embed = (
|
||||
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
||||
.view(1, 1, -1)
|
||||
.repeat(x.shape[0], x.shape[-2], 1)
|
||||
)
|
||||
|
||||
if self.normalize:
|
||||
eps = 1e-6
|
||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, :, :, None] / dim_t
|
||||
pos_y = y_embed[:, :, :, None] / dim_t
|
||||
pos_x = torch.stack(
|
||||
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
||||
).flatten(3)
|
||||
pos_y = torch.stack(
|
||||
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
||||
).flatten(3)
|
||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||
self.cache[cache_key] = pos[0]
|
||||
return pos
|
||||
|
||||
|
||||
class PositionEmbeddingRandom(nn.Module):
|
||||
"""
|
||||
Positional encoding using random spatial frequencies.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||
super().__init__()
|
||||
if scale is None or scale <= 0.0:
|
||||
scale = 1.0
|
||||
self.register_buffer(
|
||||
"positional_encoding_gaussian_matrix",
|
||||
scale * torch.randn((2, num_pos_feats)),
|
||||
)
|
||||
|
||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||
"""Positionally encode points that are normalized to [0,1]."""
|
||||
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||
coords = 2 * coords - 1
|
||||
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||
coords = 2 * np.pi * coords
|
||||
# outputs d_1 x ... x d_n x C shape
|
||||
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||
|
||||
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||
"""Generate positional encoding for a grid of the specified size."""
|
||||
h, w = size
|
||||
device: Any = self.positional_encoding_gaussian_matrix.device
|
||||
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||||
y_embed = grid.cumsum(dim=0) - 0.5
|
||||
x_embed = grid.cumsum(dim=1) - 0.5
|
||||
y_embed = y_embed / h
|
||||
x_embed = x_embed / w
|
||||
|
||||
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||||
return pe.permute(2, 0, 1) # C x H x W
|
||||
|
||||
def forward_with_coords(
|
||||
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
||||
) -> torch.Tensor:
|
||||
"""Positionally encode points that are not normalized to [0,1]."""
|
||||
coords = coords_input.clone()
|
||||
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||||
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||||
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
||||
|
||||
|
||||
# Rotary Positional Encoding, adapted from:
|
||||
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
||||
# 2. https://github.com/naver-ai/rope-vit
|
||||
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
||||
|
||||
|
||||
def init_t_xy(end_x: int, end_y: int):
|
||||
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
||||
t_x = (t % end_x).float()
|
||||
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
||||
return t_x, t_y
|
||||
|
||||
|
||||
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
||||
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
||||
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
||||
|
||||
t_x, t_y = init_t_xy(end_x, end_y)
|
||||
freqs_x = torch.outer(t_x, freqs_x)
|
||||
freqs_y = torch.outer(t_y, freqs_y)
|
||||
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
||||
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
||||
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
||||
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
||||
ndim = x.ndim
|
||||
assert 0 <= 1 < ndim
|
||||
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
||||
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def apply_rotary_enc(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
repeat_freqs_k: bool = False,
|
||||
):
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
||||
xk_ = (
|
||||
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
||||
if xk.shape[-2] != 0
|
||||
else None
|
||||
)
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
||||
if xk_ is None:
|
||||
# no keys to rotate, due to dropout
|
||||
return xq_out.type_as(xq).to(xq.device), xk
|
||||
# repeat freqs along seq_len dim to match k seq_len
|
||||
if repeat_freqs_k:
|
||||
r = xk_.shape[-2] // xq_.shape[-2]
|
||||
if freqs_cis.is_cuda:
|
||||
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
||||
else:
|
||||
# torch.repeat on complex numbers may not be supported on non-CUDA devices
|
||||
# (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
|
||||
freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
||||
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
5
sam2/sam2/modeling/sam/__init__.py
Normal file
5
sam2/sam2/modeling/sam/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
295
sam2/sam2/modeling/sam/mask_decoder.py
Normal file
295
sam2/sam2/modeling/sam/mask_decoder.py
Normal file
@@ -0,0 +1,295 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from sam2.modeling.sam2_utils import LayerNorm2d, MLP
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
use_high_res_features: bool = False,
|
||||
iou_prediction_use_sigmoid=False,
|
||||
dynamic_multimask_via_stability=False,
|
||||
dynamic_multimask_stability_delta=0.05,
|
||||
dynamic_multimask_stability_thresh=0.98,
|
||||
pred_obj_scores: bool = False,
|
||||
pred_obj_scores_mlp: bool = False,
|
||||
use_multimask_token_for_obj_ptr: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Predicts masks given an image and prompt embeddings, using a
|
||||
transformer architecture.
|
||||
|
||||
Arguments:
|
||||
transformer_dim (int): the channel dimension of the transformer
|
||||
transformer (nn.Module): the transformer used to predict masks
|
||||
num_multimask_outputs (int): the number of masks to predict
|
||||
when disambiguating masks
|
||||
activation (nn.Module): the type of activation to use when
|
||||
upscaling masks
|
||||
iou_head_depth (int): the depth of the MLP used to predict
|
||||
mask quality
|
||||
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||
used to predict mask quality
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.pred_obj_scores = pred_obj_scores
|
||||
if self.pred_obj_scores:
|
||||
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
||||
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(
|
||||
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
||||
),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(
|
||||
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
||||
),
|
||||
activation(),
|
||||
)
|
||||
self.use_high_res_features = use_high_res_features
|
||||
if use_high_res_features:
|
||||
self.conv_s0 = nn.Conv2d(
|
||||
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
||||
)
|
||||
self.conv_s1 = nn.Conv2d(
|
||||
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
||||
)
|
||||
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[
|
||||
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
||||
for i in range(self.num_mask_tokens)
|
||||
]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(
|
||||
transformer_dim,
|
||||
iou_head_hidden_dim,
|
||||
self.num_mask_tokens,
|
||||
iou_head_depth,
|
||||
sigmoid_output=iou_prediction_use_sigmoid,
|
||||
)
|
||||
if self.pred_obj_scores:
|
||||
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
||||
if pred_obj_scores_mlp:
|
||||
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
||||
|
||||
# When outputting a single mask, optionally we can dynamically fall back to the best
|
||||
# multimask output token if the single mask output token gives low stability scores.
|
||||
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
||||
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
||||
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
repeat_image: bool,
|
||||
high_res_features: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks given image and prompt embeddings.
|
||||
|
||||
Arguments:
|
||||
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
||||
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||
multimask_output (bool): Whether to return multiple masks or a single
|
||||
mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: batched predicted masks
|
||||
torch.Tensor: batched predictions of mask quality
|
||||
torch.Tensor: batched SAM token for mask output
|
||||
"""
|
||||
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
repeat_image=repeat_image,
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for output
|
||||
if multimask_output:
|
||||
masks = masks[:, 1:, :, :]
|
||||
iou_pred = iou_pred[:, 1:]
|
||||
elif self.dynamic_multimask_via_stability and not self.training:
|
||||
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
||||
else:
|
||||
masks = masks[:, 0:1, :, :]
|
||||
iou_pred = iou_pred[:, 0:1]
|
||||
|
||||
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
||||
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
||||
else:
|
||||
# Take the mask output token. Here we *always* use the token for single mask output.
|
||||
# At test time, even if we track after 1-click (and using multimask_output=True),
|
||||
# we still take the single mask token here. The rationale is that we always track
|
||||
# after multiple clicks during training, so the past tokens seen during training
|
||||
# are always the single mask token (and we'll let it be the object-memory token).
|
||||
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
||||
|
||||
# Prepare output
|
||||
return masks, iou_pred, sam_tokens_out, object_score_logits
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
repeat_image: bool,
|
||||
high_res_features: Optional[List[torch.Tensor]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predicts masks. See 'forward' for more details."""
|
||||
# Concatenate output tokens
|
||||
s = 0
|
||||
if self.pred_obj_scores:
|
||||
output_tokens = torch.cat(
|
||||
[
|
||||
self.obj_score_token.weight,
|
||||
self.iou_token.weight,
|
||||
self.mask_tokens.weight,
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
s = 1
|
||||
else:
|
||||
output_tokens = torch.cat(
|
||||
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
||||
)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(
|
||||
sparse_prompt_embeddings.size(0), -1, -1
|
||||
)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
if repeat_image:
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
else:
|
||||
assert image_embeddings.shape[0] == tokens.shape[0]
|
||||
src = image_embeddings
|
||||
src = src + dense_prompt_embeddings
|
||||
assert (
|
||||
image_pe.size(0) == 1
|
||||
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, s, :]
|
||||
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
if not self.use_high_res_features:
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
else:
|
||||
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
||||
feat_s0, feat_s1 = high_res_features
|
||||
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
||||
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
||||
|
||||
hyper_in_list: List[torch.Tensor] = []
|
||||
for i in range(self.num_mask_tokens):
|
||||
hyper_in_list.append(
|
||||
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
||||
)
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
if self.pred_obj_scores:
|
||||
assert s == 1
|
||||
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
||||
else:
|
||||
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
||||
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
||||
|
||||
return masks, iou_pred, mask_tokens_out, object_score_logits
|
||||
|
||||
def _get_stability_scores(self, mask_logits):
|
||||
"""
|
||||
Compute stability scores of the mask logits based on the IoU between upper and
|
||||
lower thresholds.
|
||||
"""
|
||||
mask_logits = mask_logits.flatten(-2)
|
||||
stability_delta = self.dynamic_multimask_stability_delta
|
||||
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
||||
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
||||
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
||||
return stability_scores
|
||||
|
||||
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
||||
"""
|
||||
When outputting a single mask, if the stability score from the current single-mask
|
||||
output (based on output token 0) falls below a threshold, we instead select from
|
||||
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
||||
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
||||
"""
|
||||
# The best mask from multimask output tokens (1~3)
|
||||
multimask_logits = all_mask_logits[:, 1:, :, :]
|
||||
multimask_iou_scores = all_iou_scores[:, 1:]
|
||||
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
||||
batch_inds = torch.arange(
|
||||
multimask_iou_scores.size(0), device=all_iou_scores.device
|
||||
)
|
||||
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
||||
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
||||
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
||||
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
||||
|
||||
# The mask from singlemask output token 0 and its stability score
|
||||
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
||||
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
||||
stability_scores = self._get_stability_scores(singlemask_logits)
|
||||
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
||||
|
||||
# Dynamically fall back to best multimask output upon low stability scores.
|
||||
mask_logits_out = torch.where(
|
||||
is_stable[..., None, None].expand_as(singlemask_logits),
|
||||
singlemask_logits,
|
||||
best_multimask_logits,
|
||||
)
|
||||
iou_scores_out = torch.where(
|
||||
is_stable.expand_as(singlemask_iou_scores),
|
||||
singlemask_iou_scores,
|
||||
best_multimask_iou_scores,
|
||||
)
|
||||
return mask_logits_out, iou_scores_out
|
182
sam2/sam2/modeling/sam/prompt_encoder.py
Normal file
182
sam2/sam2/modeling/sam/prompt_encoder.py
Normal file
@@ -0,0 +1,182 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from sam2.modeling.position_encoding import PositionEmbeddingRandom
|
||||
|
||||
from sam2.modeling.sam2_utils import LayerNorm2d
|
||||
|
||||
|
||||
class PromptEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
image_embedding_size: Tuple[int, int],
|
||||
input_image_size: Tuple[int, int],
|
||||
mask_in_chans: int,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
"""
|
||||
Encodes prompts for input to SAM's mask decoder.
|
||||
|
||||
Arguments:
|
||||
embed_dim (int): The prompts' embedding dimension
|
||||
image_embedding_size (tuple(int, int)): The spatial size of the
|
||||
image embedding, as (H, W).
|
||||
input_image_size (int): The padded size of the image as input
|
||||
to the image encoder, as (H, W).
|
||||
mask_in_chans (int): The number of hidden channels used for
|
||||
encoding input masks.
|
||||
activation (nn.Module): The activation to use when encoding
|
||||
input masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.input_image_size = input_image_size
|
||||
self.image_embedding_size = image_embedding_size
|
||||
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||
|
||||
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||
point_embeddings = [
|
||||
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
||||
]
|
||||
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
self.mask_input_size = (
|
||||
4 * image_embedding_size[0],
|
||||
4 * image_embedding_size[1],
|
||||
)
|
||||
self.mask_downscaling = nn.Sequential(
|
||||
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans // 4),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||
)
|
||||
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
def get_dense_pe(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the positional encoding used to encode point prompts,
|
||||
applied to a dense set of points the shape of the image encoding.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Positional encoding with shape
|
||||
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||
"""
|
||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||
|
||||
def _embed_points(
|
||||
self,
|
||||
points: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
pad: bool,
|
||||
) -> torch.Tensor:
|
||||
"""Embeds point prompts."""
|
||||
points = points + 0.5 # Shift to center of pixel
|
||||
if pad:
|
||||
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||||
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||||
points = torch.cat([points, padding_point], dim=1)
|
||||
labels = torch.cat([labels, padding_label], dim=1)
|
||||
point_embedding = self.pe_layer.forward_with_coords(
|
||||
points, self.input_image_size
|
||||
)
|
||||
point_embedding[labels == -1] = 0.0
|
||||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
||||
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
||||
return point_embedding
|
||||
|
||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds box prompts."""
|
||||
boxes = boxes + 0.5 # Shift to center of pixel
|
||||
coords = boxes.reshape(-1, 2, 2)
|
||||
corner_embedding = self.pe_layer.forward_with_coords(
|
||||
coords, self.input_image_size
|
||||
)
|
||||
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||
return corner_embedding
|
||||
|
||||
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds mask inputs."""
|
||||
mask_embedding = self.mask_downscaling(masks)
|
||||
return mask_embedding
|
||||
|
||||
def _get_batch_size(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> int:
|
||||
"""
|
||||
Gets the batch size of the output given the batch size of the input prompts.
|
||||
"""
|
||||
if points is not None:
|
||||
return points[0].shape[0]
|
||||
elif boxes is not None:
|
||||
return boxes.shape[0]
|
||||
elif masks is not None:
|
||||
return masks.shape[0]
|
||||
else:
|
||||
return 1
|
||||
|
||||
def _get_device(self) -> torch.device:
|
||||
return self.point_embeddings[0].weight.device
|
||||
|
||||
def forward(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Embeds different types of prompts, returning both sparse and dense
|
||||
embeddings.
|
||||
|
||||
Arguments:
|
||||
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||||
and labels to embed.
|
||||
boxes (torch.Tensor or none): boxes to embed
|
||||
masks (torch.Tensor or none): masks to embed
|
||||
|
||||
Returns:
|
||||
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||||
BxNx(embed_dim), where N is determined by the number of input points
|
||||
and boxes.
|
||||
torch.Tensor: dense embeddings for the masks, in the shape
|
||||
Bx(embed_dim)x(embed_H)x(embed_W)
|
||||
"""
|
||||
bs = self._get_batch_size(points, boxes, masks)
|
||||
sparse_embeddings = torch.empty(
|
||||
(bs, 0, self.embed_dim), device=self._get_device()
|
||||
)
|
||||
if points is not None:
|
||||
coords, labels = points
|
||||
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||
if boxes is not None:
|
||||
box_embeddings = self._embed_boxes(boxes)
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||
|
||||
if masks is not None:
|
||||
dense_embeddings = self._embed_masks(masks)
|
||||
else:
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||||
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||||
)
|
||||
|
||||
return sparse_embeddings, dense_embeddings
|
360
sam2/sam2/modeling/sam/transformer.py
Normal file
360
sam2/sam2/modeling/sam/transformer.py
Normal file
@@ -0,0 +1,360 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import contextlib
|
||||
import math
|
||||
import warnings
|
||||
from functools import partial
|
||||
from typing import Tuple, Type
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, Tensor
|
||||
|
||||
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
|
||||
from sam2.modeling.sam2_utils import MLP
|
||||
from sam2.utils.misc import get_sdpa_settings
|
||||
|
||||
warnings.simplefilter(action="ignore", category=FutureWarning)
|
||||
# Check whether Flash Attention is available (and use it by default)
|
||||
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
|
||||
# A fallback setting to allow all available kernels if Flash Attention fails
|
||||
ALLOW_ALL_KERNELS = False
|
||||
|
||||
|
||||
def sdp_kernel_context(dropout_p):
|
||||
"""
|
||||
Get the context for the attention scaled dot-product kernel. We use Flash Attention
|
||||
by default, but fall back to all available kernels if Flash Attention fails.
|
||||
"""
|
||||
if ALLOW_ALL_KERNELS:
|
||||
return contextlib.nullcontext()
|
||||
|
||||
return torch.backends.cuda.sdp_kernel(
|
||||
enable_flash=USE_FLASH_ATTN,
|
||||
# if Flash attention kernel is off, then math kernel needs to be enabled
|
||||
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
|
||||
enable_mem_efficient=OLD_GPU,
|
||||
)
|
||||
|
||||
|
||||
class TwoWayTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
depth: int,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer decoder that attends to an input image using
|
||||
queries whose positional embedding is supplied.
|
||||
|
||||
Args:
|
||||
depth (int): number of layers in the transformer
|
||||
embedding_dim (int): the channel dimension for the input embeddings
|
||||
num_heads (int): the number of heads for multihead attention. Must
|
||||
divide embedding_dim
|
||||
mlp_dim (int): the channel dimension internal to the MLP block
|
||||
activation (nn.Module): the activation to use in the MLP block
|
||||
"""
|
||||
super().__init__()
|
||||
self.depth = depth
|
||||
self.embedding_dim = embedding_dim
|
||||
self.num_heads = num_heads
|
||||
self.mlp_dim = mlp_dim
|
||||
self.layers = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
self.layers.append(
|
||||
TwoWayAttentionBlock(
|
||||
embedding_dim=embedding_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_dim=mlp_dim,
|
||||
activation=activation,
|
||||
attention_downsample_rate=attention_downsample_rate,
|
||||
skip_first_layer_pe=(i == 0),
|
||||
)
|
||||
)
|
||||
|
||||
self.final_attn_token_to_image = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embedding: Tensor,
|
||||
image_pe: Tensor,
|
||||
point_embedding: Tensor,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Args:
|
||||
image_embedding (torch.Tensor): image to attend to. Should be shape
|
||||
B x embedding_dim x h x w for any h and w.
|
||||
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
||||
have the same shape as image_embedding.
|
||||
point_embedding (torch.Tensor): the embedding to add to the query points.
|
||||
Must have shape B x N_points x embedding_dim for any N_points.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: the processed point_embedding
|
||||
torch.Tensor: the processed image_embedding
|
||||
"""
|
||||
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||
bs, c, h, w = image_embedding.shape
|
||||
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||
|
||||
# Prepare queries
|
||||
queries = point_embedding
|
||||
keys = image_embedding
|
||||
|
||||
# Apply transformer blocks and final layernorm
|
||||
for layer in self.layers:
|
||||
queries, keys = layer(
|
||||
queries=queries,
|
||||
keys=keys,
|
||||
query_pe=point_embedding,
|
||||
key_pe=image_pe,
|
||||
)
|
||||
|
||||
# Apply the final attention layer from the points to the image
|
||||
q = queries + point_embedding
|
||||
k = keys + image_pe
|
||||
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm_final_attn(queries)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class TwoWayAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int = 2048,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
skip_first_layer_pe: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer block with four layers: (1) self-attention of sparse
|
||||
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
||||
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
||||
inputs.
|
||||
|
||||
Arguments:
|
||||
embedding_dim (int): the channel dimension of the embeddings
|
||||
num_heads (int): the number of heads in the attention layers
|
||||
mlp_dim (int): the hidden dimension of the mlp block
|
||||
activation (nn.Module): the activation of the mlp block
|
||||
skip_first_layer_pe (bool): skip the PE on the first layer
|
||||
"""
|
||||
super().__init__()
|
||||
self.self_attn = Attention(embedding_dim, num_heads)
|
||||
self.norm1 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.cross_attn_token_to_image = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
self.norm2 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.mlp = MLP(
|
||||
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
|
||||
)
|
||||
self.norm3 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.norm4 = nn.LayerNorm(embedding_dim)
|
||||
self.cross_attn_image_to_token = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
|
||||
self.skip_first_layer_pe = skip_first_layer_pe
|
||||
|
||||
def forward(
|
||||
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
# Self attention block
|
||||
if self.skip_first_layer_pe:
|
||||
queries = self.self_attn(q=queries, k=queries, v=queries)
|
||||
else:
|
||||
q = queries + query_pe
|
||||
attn_out = self.self_attn(q=q, k=q, v=queries)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm1(queries)
|
||||
|
||||
# Cross attention block, tokens attending to image embedding
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm2(queries)
|
||||
|
||||
# MLP block
|
||||
mlp_out = self.mlp(queries)
|
||||
queries = queries + mlp_out
|
||||
queries = self.norm3(queries)
|
||||
|
||||
# Cross attention block, image embedding attending to tokens
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
||||
keys = keys + attn_out
|
||||
keys = self.norm4(keys)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
An attention layer that allows for downscaling the size of the embedding
|
||||
after projection to queries, keys, and values.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
downsample_rate: int = 1,
|
||||
dropout: float = 0.0,
|
||||
kv_in_dim: int = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
||||
self.internal_dim = embedding_dim // downsample_rate
|
||||
self.num_heads = num_heads
|
||||
assert (
|
||||
self.internal_dim % num_heads == 0
|
||||
), "num_heads must divide embedding_dim."
|
||||
|
||||
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
||||
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||
|
||||
self.dropout_p = dropout
|
||||
|
||||
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||
b, n, c = x.shape
|
||||
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||
|
||||
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||
b, n_heads, n_tokens, c_per_head = x.shape
|
||||
x = x.transpose(1, 2)
|
||||
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
||||
# Input projections
|
||||
q = self.q_proj(q)
|
||||
k = self.k_proj(k)
|
||||
v = self.v_proj(v)
|
||||
|
||||
# Separate into heads
|
||||
q = self._separate_heads(q, self.num_heads)
|
||||
k = self._separate_heads(k, self.num_heads)
|
||||
v = self._separate_heads(v, self.num_heads)
|
||||
|
||||
dropout_p = self.dropout_p if self.training else 0.0
|
||||
# Attention
|
||||
try:
|
||||
with sdp_kernel_context(dropout_p):
|
||||
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
||||
except Exception as e:
|
||||
# Fall back to all kernels if the Flash attention kernel fails
|
||||
warnings.warn(
|
||||
f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
|
||||
f"kernels for scaled_dot_product_attention (which may have a slower speed).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
global ALLOW_ALL_KERNELS
|
||||
ALLOW_ALL_KERNELS = True
|
||||
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
||||
|
||||
out = self._recombine_heads(out)
|
||||
out = self.out_proj(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class RoPEAttention(Attention):
|
||||
"""Attention with rotary position encoding."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args,
|
||||
rope_theta=10000.0,
|
||||
# whether to repeat q rope to match k length
|
||||
# this is needed for cross-attention to memories
|
||||
rope_k_repeat=False,
|
||||
feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.compute_cis = partial(
|
||||
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
|
||||
)
|
||||
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
|
||||
self.freqs_cis = freqs_cis
|
||||
self.rope_k_repeat = rope_k_repeat
|
||||
|
||||
def forward(
|
||||
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
|
||||
) -> Tensor:
|
||||
# Input projections
|
||||
q = self.q_proj(q)
|
||||
k = self.k_proj(k)
|
||||
v = self.v_proj(v)
|
||||
|
||||
# Separate into heads
|
||||
q = self._separate_heads(q, self.num_heads)
|
||||
k = self._separate_heads(k, self.num_heads)
|
||||
v = self._separate_heads(v, self.num_heads)
|
||||
|
||||
# Apply rotary position encoding
|
||||
w = h = math.sqrt(q.shape[-2])
|
||||
self.freqs_cis = self.freqs_cis.to(q.device)
|
||||
if self.freqs_cis.shape[0] != q.shape[-2]:
|
||||
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
|
||||
if q.shape[-2] != k.shape[-2]:
|
||||
assert self.rope_k_repeat
|
||||
|
||||
num_k_rope = k.size(-2) - num_k_exclude_rope
|
||||
q, k[:, :, :num_k_rope] = apply_rotary_enc(
|
||||
q,
|
||||
k[:, :, :num_k_rope],
|
||||
freqs_cis=self.freqs_cis,
|
||||
repeat_freqs_k=self.rope_k_repeat,
|
||||
)
|
||||
|
||||
dropout_p = self.dropout_p if self.training else 0.0
|
||||
# Attention
|
||||
try:
|
||||
with sdp_kernel_context(dropout_p):
|
||||
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
||||
except Exception as e:
|
||||
# Fall back to all kernels if the Flash attention kernel fails
|
||||
warnings.warn(
|
||||
f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
|
||||
f"kernels for scaled_dot_product_attention (which may have a slower speed).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
global ALLOW_ALL_KERNELS
|
||||
ALLOW_ALL_KERNELS = True
|
||||
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
||||
|
||||
out = self._recombine_heads(out)
|
||||
out = self.out_proj(out)
|
||||
|
||||
return out
|
1060
sam2/sam2/modeling/sam2_base.py
Normal file
1060
sam2/sam2/modeling/sam2_base.py
Normal file
File diff suppressed because it is too large
Load Diff
323
sam2/sam2/modeling/sam2_utils.py
Normal file
323
sam2/sam2/modeling/sam2_utils.py
Normal file
@@ -0,0 +1,323 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import copy
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from sam2.utils.misc import mask_to_box
|
||||
|
||||
|
||||
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
||||
"""
|
||||
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
|
||||
that are temporally closest to the current frame at `frame_idx`. Here, we take
|
||||
- a) the closest conditioning frame before `frame_idx` (if any);
|
||||
- b) the closest conditioning frame after `frame_idx` (if any);
|
||||
- c) any other temporally closest conditioning frames until reaching a total
|
||||
of `max_cond_frame_num` conditioning frames.
|
||||
|
||||
Outputs:
|
||||
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
|
||||
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
|
||||
"""
|
||||
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
||||
selected_outputs = cond_frame_outputs
|
||||
unselected_outputs = {}
|
||||
else:
|
||||
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
||||
selected_outputs = {}
|
||||
|
||||
# the closest conditioning frame before `frame_idx` (if any)
|
||||
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
||||
if idx_before is not None:
|
||||
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
||||
|
||||
# the closest conditioning frame after `frame_idx` (if any)
|
||||
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
||||
if idx_after is not None:
|
||||
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
||||
|
||||
# add other temporally closest conditioning frames until reaching a total
|
||||
# of `max_cond_frame_num` conditioning frames.
|
||||
num_remain = max_cond_frame_num - len(selected_outputs)
|
||||
inds_remain = sorted(
|
||||
(t for t in cond_frame_outputs if t not in selected_outputs),
|
||||
key=lambda x: abs(x - frame_idx),
|
||||
)[:num_remain]
|
||||
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
||||
unselected_outputs = {
|
||||
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
|
||||
}
|
||||
|
||||
return selected_outputs, unselected_outputs
|
||||
|
||||
|
||||
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
||||
"""
|
||||
Get 1D sine positional embedding as in the original Transformer paper.
|
||||
"""
|
||||
pe_dim = dim // 2
|
||||
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
||||
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
||||
|
||||
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
||||
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_activation_fn(activation):
|
||||
"""Return an activation function given a string"""
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
if activation == "gelu":
|
||||
return F.gelu
|
||||
if activation == "glu":
|
||||
return F.glu
|
||||
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
||||
|
||||
|
||||
def get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
|
||||
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
if self.drop_prob == 0.0 or not self.training:
|
||||
return x
|
||||
keep_prob = 1 - self.drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and self.scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
|
||||
# Lightly adapted from
|
||||
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
output_dim: int,
|
||||
num_layers: int,
|
||||
activation: nn.Module = nn.ReLU,
|
||||
sigmoid_output: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(
|
||||
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
||||
)
|
||||
self.sigmoid_output = sigmoid_output
|
||||
self.act = activation()
|
||||
|
||||
def forward(self, x):
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
if self.sigmoid_output:
|
||||
x = F.sigmoid(x)
|
||||
return x
|
||||
|
||||
|
||||
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||||
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||||
class LayerNorm2d(nn.Module):
|
||||
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
||||
|
||||
|
||||
def sample_box_points(
|
||||
masks: torch.Tensor,
|
||||
noise: float = 0.1, # SAM default
|
||||
noise_bound: int = 20, # SAM default
|
||||
top_left_label: int = 2,
|
||||
bottom_right_label: int = 3,
|
||||
) -> Tuple[np.array, np.array]:
|
||||
"""
|
||||
Sample a noised version of the top left and bottom right corners of a given `bbox`
|
||||
|
||||
Inputs:
|
||||
- masks: [B, 1, H,W] boxes, dtype=torch.Tensor
|
||||
- noise: noise as a fraction of box width and height, dtype=float
|
||||
- noise_bound: maximum amount of noise (in pure pixesl), dtype=int
|
||||
|
||||
Returns:
|
||||
- box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
|
||||
- box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
|
||||
"""
|
||||
device = masks.device
|
||||
box_coords = mask_to_box(masks)
|
||||
B, _, H, W = masks.shape
|
||||
box_labels = torch.tensor(
|
||||
[top_left_label, bottom_right_label], dtype=torch.int, device=device
|
||||
).repeat(B)
|
||||
if noise > 0.0:
|
||||
if not isinstance(noise_bound, torch.Tensor):
|
||||
noise_bound = torch.tensor(noise_bound, device=device)
|
||||
bbox_w = box_coords[..., 2] - box_coords[..., 0]
|
||||
bbox_h = box_coords[..., 3] - box_coords[..., 1]
|
||||
max_dx = torch.min(bbox_w * noise, noise_bound)
|
||||
max_dy = torch.min(bbox_h * noise, noise_bound)
|
||||
box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
|
||||
box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
|
||||
|
||||
box_coords = box_coords + box_noise
|
||||
img_bounds = (
|
||||
torch.tensor([W, H, W, H], device=device) - 1
|
||||
) # uncentered pixel coords
|
||||
box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping
|
||||
|
||||
box_coords = box_coords.reshape(-1, 2, 2) # always 2 points
|
||||
box_labels = box_labels.reshape(-1, 2)
|
||||
return box_coords, box_labels
|
||||
|
||||
|
||||
def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
|
||||
"""
|
||||
Sample `num_pt` random points (along with their labels) independently from the error regions.
|
||||
|
||||
Inputs:
|
||||
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
|
||||
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
|
||||
- num_pt: int, number of points to sample independently for each of the B error maps
|
||||
|
||||
Outputs:
|
||||
- points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
|
||||
- labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
|
||||
negative clicks
|
||||
"""
|
||||
if pred_masks is None: # if pred_masks is not provided, treat it as empty
|
||||
pred_masks = torch.zeros_like(gt_masks)
|
||||
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
|
||||
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
|
||||
assert num_pt >= 0
|
||||
|
||||
B, _, H_im, W_im = gt_masks.shape
|
||||
device = gt_masks.device
|
||||
|
||||
# false positive region, a new point sampled in this region should have
|
||||
# negative label to correct the FP error
|
||||
fp_masks = ~gt_masks & pred_masks
|
||||
# false negative region, a new point sampled in this region should have
|
||||
# positive label to correct the FN error
|
||||
fn_masks = gt_masks & ~pred_masks
|
||||
# whether the prediction completely match the ground-truth on each mask
|
||||
all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
|
||||
all_correct = all_correct[..., None, None]
|
||||
|
||||
# channel 0 is FP map, while channel 1 is FN map
|
||||
pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
|
||||
# sample a negative new click from FP region or a positive new click
|
||||
# from FN region, depend on where the maximum falls,
|
||||
# and in case the predictions are all correct (no FP or FN), we just
|
||||
# sample a negative click from the background region
|
||||
pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
|
||||
pts_noise[..., 1] *= fn_masks
|
||||
pts_idx = pts_noise.flatten(2).argmax(dim=2)
|
||||
labels = (pts_idx % 2).to(torch.int32)
|
||||
pts_idx = pts_idx // 2
|
||||
pts_x = pts_idx % W_im
|
||||
pts_y = pts_idx // W_im
|
||||
points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
|
||||
return points, labels
|
||||
|
||||
|
||||
def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
|
||||
"""
|
||||
Sample 1 random point (along with its label) from the center of each error region,
|
||||
that is, the point with the largest distance to the boundary of each error region.
|
||||
This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
|
||||
|
||||
Inputs:
|
||||
- gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
|
||||
- pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
|
||||
- padding: if True, pad with boundary of 1 px for distance transform
|
||||
|
||||
Outputs:
|
||||
- points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
|
||||
- labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
|
||||
"""
|
||||
import cv2
|
||||
|
||||
if pred_masks is None:
|
||||
pred_masks = torch.zeros_like(gt_masks)
|
||||
assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
|
||||
assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
|
||||
|
||||
B, _, _, W_im = gt_masks.shape
|
||||
device = gt_masks.device
|
||||
|
||||
# false positive region, a new point sampled in this region should have
|
||||
# negative label to correct the FP error
|
||||
fp_masks = ~gt_masks & pred_masks
|
||||
# false negative region, a new point sampled in this region should have
|
||||
# positive label to correct the FN error
|
||||
fn_masks = gt_masks & ~pred_masks
|
||||
|
||||
fp_masks = fp_masks.cpu().numpy()
|
||||
fn_masks = fn_masks.cpu().numpy()
|
||||
points = torch.zeros(B, 1, 2, dtype=torch.float)
|
||||
labels = torch.ones(B, 1, dtype=torch.int32)
|
||||
for b in range(B):
|
||||
fn_mask = fn_masks[b, 0]
|
||||
fp_mask = fp_masks[b, 0]
|
||||
if padding:
|
||||
fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
|
||||
fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
|
||||
# compute the distance of each point in FN/FP region to its boundary
|
||||
fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
||||
fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
||||
if padding:
|
||||
fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
|
||||
fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
|
||||
|
||||
# take the point in FN/FP region with the largest distance to its boundary
|
||||
fn_mask_dt_flat = fn_mask_dt.reshape(-1)
|
||||
fp_mask_dt_flat = fp_mask_dt.reshape(-1)
|
||||
fn_argmax = np.argmax(fn_mask_dt_flat)
|
||||
fp_argmax = np.argmax(fp_mask_dt_flat)
|
||||
is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
|
||||
pt_idx = fn_argmax if is_positive else fp_argmax
|
||||
points[b, 0, 0] = pt_idx % W_im # x
|
||||
points[b, 0, 1] = pt_idx // W_im # y
|
||||
labels[b, 0] = int(is_positive)
|
||||
|
||||
points = points.to(device)
|
||||
labels = labels.to(device)
|
||||
return points, labels
|
||||
|
||||
|
||||
def get_next_point(gt_masks, pred_masks, method):
|
||||
if method == "uniform":
|
||||
return sample_random_points_from_errors(gt_masks, pred_masks)
|
||||
elif method == "center":
|
||||
return sample_one_point_from_error_center(gt_masks, pred_masks)
|
||||
else:
|
||||
raise ValueError(f"unknown sampling method {method}")
|
1
sam2/sam2/sam2_hiera_b+.yaml
Symbolic link
1
sam2/sam2/sam2_hiera_b+.yaml
Symbolic link
@@ -0,0 +1 @@
|
||||
configs/sam2/sam2_hiera_b+.yaml
|
1
sam2/sam2/sam2_hiera_l.yaml
Symbolic link
1
sam2/sam2/sam2_hiera_l.yaml
Symbolic link
@@ -0,0 +1 @@
|
||||
configs/sam2/sam2_hiera_l.yaml
|
1
sam2/sam2/sam2_hiera_s.yaml
Symbolic link
1
sam2/sam2/sam2_hiera_s.yaml
Symbolic link
@@ -0,0 +1 @@
|
||||
configs/sam2/sam2_hiera_s.yaml
|
1
sam2/sam2/sam2_hiera_t.yaml
Symbolic link
1
sam2/sam2/sam2_hiera_t.yaml
Symbolic link
@@ -0,0 +1 @@
|
||||
configs/sam2/sam2_hiera_t.yaml
|
466
sam2/sam2/sam2_image_predictor.py
Normal file
466
sam2/sam2/sam2_image_predictor.py
Normal file
@@ -0,0 +1,466 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL.Image import Image
|
||||
|
||||
from sam2.modeling.sam2_base import SAM2Base
|
||||
|
||||
from sam2.utils.transforms import SAM2Transforms
|
||||
|
||||
|
||||
class SAM2ImagePredictor:
|
||||
def __init__(
|
||||
self,
|
||||
sam_model: SAM2Base,
|
||||
mask_threshold=0.0,
|
||||
max_hole_area=0.0,
|
||||
max_sprinkle_area=0.0,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""
|
||||
Uses SAM-2 to calculate the image embedding for an image, and then
|
||||
allow repeated, efficient mask prediction given prompts.
|
||||
|
||||
Arguments:
|
||||
sam_model (Sam-2): The model to use for mask prediction.
|
||||
mask_threshold (float): The threshold to use when converting mask logits
|
||||
to binary masks. Masks are thresholded at 0 by default.
|
||||
max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
|
||||
the maximum area of max_hole_area in low_res_masks.
|
||||
max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
|
||||
the maximum area of max_sprinkle_area in low_res_masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.model = sam_model
|
||||
self._transforms = SAM2Transforms(
|
||||
resolution=self.model.image_size,
|
||||
mask_threshold=mask_threshold,
|
||||
max_hole_area=max_hole_area,
|
||||
max_sprinkle_area=max_sprinkle_area,
|
||||
)
|
||||
|
||||
# Predictor state
|
||||
self._is_image_set = False
|
||||
self._features = None
|
||||
self._orig_hw = None
|
||||
# Whether the predictor is set for single image or a batch of images
|
||||
self._is_batch = False
|
||||
|
||||
# Predictor config
|
||||
self.mask_threshold = mask_threshold
|
||||
|
||||
# Spatial dim for backbone feature maps
|
||||
self._bb_feat_sizes = [
|
||||
(256, 256),
|
||||
(128, 128),
|
||||
(64, 64),
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
|
||||
"""
|
||||
Load a pretrained model from the Hugging Face hub.
|
||||
|
||||
Arguments:
|
||||
model_id (str): The Hugging Face repository ID.
|
||||
**kwargs: Additional arguments to pass to the model constructor.
|
||||
|
||||
Returns:
|
||||
(SAM2ImagePredictor): The loaded model.
|
||||
"""
|
||||
from sam2.build_sam import build_sam2_hf
|
||||
|
||||
sam_model = build_sam2_hf(model_id, **kwargs)
|
||||
return cls(sam_model, **kwargs)
|
||||
|
||||
@torch.no_grad()
|
||||
def set_image(
|
||||
self,
|
||||
image: Union[np.ndarray, Image],
|
||||
) -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image, allowing
|
||||
masks to be predicted with the 'predict' method.
|
||||
|
||||
Arguments:
|
||||
image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
|
||||
with pixel values in [0, 255].
|
||||
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||
"""
|
||||
self.reset_predictor()
|
||||
# Transform the image to the form expected by the model
|
||||
if isinstance(image, np.ndarray):
|
||||
logging.info("For numpy array image, we assume (HxWxC) format")
|
||||
self._orig_hw = [image.shape[:2]]
|
||||
elif isinstance(image, Image):
|
||||
w, h = image.size
|
||||
self._orig_hw = [(h, w)]
|
||||
else:
|
||||
raise NotImplementedError("Image format not supported")
|
||||
|
||||
input_image = self._transforms(image)
|
||||
input_image = input_image[None, ...].to(self.device)
|
||||
|
||||
assert (
|
||||
len(input_image.shape) == 4 and input_image.shape[1] == 3
|
||||
), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
|
||||
logging.info("Computing image embeddings for the provided image...")
|
||||
backbone_out = self.model.forward_image(input_image)
|
||||
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
||||
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
||||
if self.model.directly_add_no_mem_embed:
|
||||
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
||||
|
||||
feats = [
|
||||
feat.permute(1, 2, 0).view(1, -1, *feat_size)
|
||||
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
||||
][::-1]
|
||||
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
||||
self._is_image_set = True
|
||||
logging.info("Image embeddings computed.")
|
||||
|
||||
@torch.no_grad()
|
||||
def set_image_batch(
|
||||
self,
|
||||
image_list: List[Union[np.ndarray]],
|
||||
) -> None:
|
||||
"""
|
||||
Calculates the image embeddings for the provided image batch, allowing
|
||||
masks to be predicted with the 'predict_batch' method.
|
||||
|
||||
Arguments:
|
||||
image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
|
||||
with pixel values in [0, 255].
|
||||
"""
|
||||
self.reset_predictor()
|
||||
assert isinstance(image_list, list)
|
||||
self._orig_hw = []
|
||||
for image in image_list:
|
||||
assert isinstance(
|
||||
image, np.ndarray
|
||||
), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
|
||||
self._orig_hw.append(image.shape[:2])
|
||||
# Transform the image to the form expected by the model
|
||||
img_batch = self._transforms.forward_batch(image_list)
|
||||
img_batch = img_batch.to(self.device)
|
||||
batch_size = img_batch.shape[0]
|
||||
assert (
|
||||
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
||||
), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
||||
logging.info("Computing image embeddings for the provided images...")
|
||||
backbone_out = self.model.forward_image(img_batch)
|
||||
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
||||
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
||||
if self.model.directly_add_no_mem_embed:
|
||||
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
||||
|
||||
feats = [
|
||||
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
||||
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
||||
][::-1]
|
||||
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
||||
self._is_image_set = True
|
||||
self._is_batch = True
|
||||
logging.info("Image embeddings computed.")
|
||||
|
||||
def predict_batch(
|
||||
self,
|
||||
point_coords_batch: List[np.ndarray] = None,
|
||||
point_labels_batch: List[np.ndarray] = None,
|
||||
box_batch: List[np.ndarray] = None,
|
||||
mask_input_batch: List[np.ndarray] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
normalize_coords=True,
|
||||
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
|
||||
"""This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
|
||||
It returns a tuple of lists of masks, ious, and low_res_masks_logits.
|
||||
"""
|
||||
assert self._is_batch, "This function should only be used when in batched mode"
|
||||
if not self._is_image_set:
|
||||
raise RuntimeError(
|
||||
"An image must be set with .set_image_batch(...) before mask prediction."
|
||||
)
|
||||
num_images = len(self._features["image_embed"])
|
||||
all_masks = []
|
||||
all_ious = []
|
||||
all_low_res_masks = []
|
||||
for img_idx in range(num_images):
|
||||
# Transform input prompts
|
||||
point_coords = (
|
||||
point_coords_batch[img_idx] if point_coords_batch is not None else None
|
||||
)
|
||||
point_labels = (
|
||||
point_labels_batch[img_idx] if point_labels_batch is not None else None
|
||||
)
|
||||
box = box_batch[img_idx] if box_batch is not None else None
|
||||
mask_input = (
|
||||
mask_input_batch[img_idx] if mask_input_batch is not None else None
|
||||
)
|
||||
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
||||
point_coords,
|
||||
point_labels,
|
||||
box,
|
||||
mask_input,
|
||||
normalize_coords,
|
||||
img_idx=img_idx,
|
||||
)
|
||||
masks, iou_predictions, low_res_masks = self._predict(
|
||||
unnorm_coords,
|
||||
labels,
|
||||
unnorm_box,
|
||||
mask_input,
|
||||
multimask_output,
|
||||
return_logits=return_logits,
|
||||
img_idx=img_idx,
|
||||
)
|
||||
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
||||
iou_predictions_np = (
|
||||
iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
||||
)
|
||||
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
||||
all_masks.append(masks_np)
|
||||
all_ious.append(iou_predictions_np)
|
||||
all_low_res_masks.append(low_res_masks_np)
|
||||
|
||||
return all_masks, all_ious, all_low_res_masks
|
||||
|
||||
def predict(
|
||||
self,
|
||||
point_coords: Optional[np.ndarray] = None,
|
||||
point_labels: Optional[np.ndarray] = None,
|
||||
box: Optional[np.ndarray] = None,
|
||||
mask_input: Optional[np.ndarray] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
normalize_coords=True,
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
|
||||
Arguments:
|
||||
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (np.ndarray or None): A length N array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||
for SAM, H=W=256.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(np.ndarray): An array of length C containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||
of masks and H=W=256. These low resolution logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self._is_image_set:
|
||||
raise RuntimeError(
|
||||
"An image must be set with .set_image(...) before mask prediction."
|
||||
)
|
||||
|
||||
# Transform input prompts
|
||||
|
||||
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
||||
point_coords, point_labels, box, mask_input, normalize_coords
|
||||
)
|
||||
|
||||
masks, iou_predictions, low_res_masks = self._predict(
|
||||
unnorm_coords,
|
||||
labels,
|
||||
unnorm_box,
|
||||
mask_input,
|
||||
multimask_output,
|
||||
return_logits=return_logits,
|
||||
)
|
||||
|
||||
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
||||
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
||||
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
||||
return masks_np, iou_predictions_np, low_res_masks_np
|
||||
|
||||
def _prep_prompts(
|
||||
self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
|
||||
):
|
||||
|
||||
unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
|
||||
if point_coords is not None:
|
||||
assert (
|
||||
point_labels is not None
|
||||
), "point_labels must be supplied if point_coords is supplied."
|
||||
point_coords = torch.as_tensor(
|
||||
point_coords, dtype=torch.float, device=self.device
|
||||
)
|
||||
unnorm_coords = self._transforms.transform_coords(
|
||||
point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
||||
)
|
||||
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
||||
if len(unnorm_coords.shape) == 2:
|
||||
unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
|
||||
if box is not None:
|
||||
box = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||
unnorm_box = self._transforms.transform_boxes(
|
||||
box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
||||
) # Bx2x2
|
||||
if mask_logits is not None:
|
||||
mask_input = torch.as_tensor(
|
||||
mask_logits, dtype=torch.float, device=self.device
|
||||
)
|
||||
if len(mask_input.shape) == 3:
|
||||
mask_input = mask_input[None, :, :, :]
|
||||
return mask_input, unnorm_coords, labels, unnorm_box
|
||||
|
||||
@torch.no_grad()
|
||||
def _predict(
|
||||
self,
|
||||
point_coords: Optional[torch.Tensor],
|
||||
point_labels: Optional[torch.Tensor],
|
||||
boxes: Optional[torch.Tensor] = None,
|
||||
mask_input: Optional[torch.Tensor] = None,
|
||||
multimask_output: bool = True,
|
||||
return_logits: bool = False,
|
||||
img_idx: int = -1,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks for the given input prompts, using the currently set image.
|
||||
Input prompts are batched torch tensors and are expected to already be
|
||||
transformed to the input frame using SAM2Transforms.
|
||||
|
||||
Arguments:
|
||||
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||
model. Each point is in (X,Y) in pixels.
|
||||
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||
background point.
|
||||
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||
model, in XYXY format.
|
||||
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||
predict method do not need further transformation.
|
||||
multimask_output (bool): If true, the model will return three masks.
|
||||
For ambiguous input prompts (such as a single click), this will often
|
||||
produce better masks than a single prediction. If only a single
|
||||
mask is needed, the model's predicted quality score can be used
|
||||
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||
input prompts, multimask_output=False can give better results.
|
||||
return_logits (bool): If true, returns un-thresholded masks logits
|
||||
instead of a binary mask.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||
number of masks, and (H, W) is the original image size.
|
||||
(torch.Tensor): An array of shape BxC containing the model's
|
||||
predictions for the quality of each mask.
|
||||
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||
of masks and H=W=256. These low res logits can be passed to
|
||||
a subsequent iteration as mask input.
|
||||
"""
|
||||
if not self._is_image_set:
|
||||
raise RuntimeError(
|
||||
"An image must be set with .set_image(...) before mask prediction."
|
||||
)
|
||||
|
||||
if point_coords is not None:
|
||||
concat_points = (point_coords, point_labels)
|
||||
else:
|
||||
concat_points = None
|
||||
|
||||
# Embed prompts
|
||||
if boxes is not None:
|
||||
box_coords = boxes.reshape(-1, 2, 2)
|
||||
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
|
||||
box_labels = box_labels.repeat(boxes.size(0), 1)
|
||||
# we merge "boxes" and "points" into a single "concat_points" input (where
|
||||
# boxes are added at the beginning) to sam_prompt_encoder
|
||||
if concat_points is not None:
|
||||
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
|
||||
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
|
||||
concat_points = (concat_coords, concat_labels)
|
||||
else:
|
||||
concat_points = (box_coords, box_labels)
|
||||
|
||||
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
||||
points=concat_points,
|
||||
boxes=None,
|
||||
masks=mask_input,
|
||||
)
|
||||
|
||||
# Predict masks
|
||||
batched_mode = (
|
||||
concat_points is not None and concat_points[0].shape[0] > 1
|
||||
) # multi object prediction
|
||||
high_res_features = [
|
||||
feat_level[img_idx].unsqueeze(0)
|
||||
for feat_level in self._features["high_res_feats"]
|
||||
]
|
||||
low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
|
||||
image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
|
||||
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
repeat_image=batched_mode,
|
||||
high_res_features=high_res_features,
|
||||
)
|
||||
|
||||
# Upscale the masks to the original image resolution
|
||||
masks = self._transforms.postprocess_masks(
|
||||
low_res_masks, self._orig_hw[img_idx]
|
||||
)
|
||||
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
|
||||
if not return_logits:
|
||||
masks = masks > self.mask_threshold
|
||||
|
||||
return masks, iou_predictions, low_res_masks
|
||||
|
||||
def get_image_embedding(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the image embeddings for the currently set image, with
|
||||
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||
"""
|
||||
if not self._is_image_set:
|
||||
raise RuntimeError(
|
||||
"An image must be set with .set_image(...) to generate an embedding."
|
||||
)
|
||||
assert (
|
||||
self._features is not None
|
||||
), "Features must exist if an image has been set."
|
||||
return self._features["image_embed"]
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return self.model.device
|
||||
|
||||
def reset_predictor(self) -> None:
|
||||
"""
|
||||
Resets the image embeddings and other state variables.
|
||||
"""
|
||||
self._is_image_set = False
|
||||
self._features = None
|
||||
self._orig_hw = None
|
||||
self._is_batch = False
|
1174
sam2/sam2/sam2_video_predictor.py
Normal file
1174
sam2/sam2/sam2_video_predictor.py
Normal file
File diff suppressed because it is too large
Load Diff
5
sam2/sam2/utils/__init__.py
Normal file
5
sam2/sam2/utils/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
348
sam2/sam2/utils/amg.py
Normal file
348
sam2/sam2/utils/amg.py
Normal file
@@ -0,0 +1,348 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from itertools import product
|
||||
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
|
||||
|
||||
|
||||
class MaskData:
|
||||
"""
|
||||
A structure for storing masks and their related data in batched format.
|
||||
Implements basic filtering and concatenation.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
for v in kwargs.values():
|
||||
assert isinstance(
|
||||
v, (list, np.ndarray, torch.Tensor)
|
||||
), "MaskData only supports list, numpy arrays, and torch tensors."
|
||||
self._stats = dict(**kwargs)
|
||||
|
||||
def __setitem__(self, key: str, item: Any) -> None:
|
||||
assert isinstance(
|
||||
item, (list, np.ndarray, torch.Tensor)
|
||||
), "MaskData only supports list, numpy arrays, and torch tensors."
|
||||
self._stats[key] = item
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
del self._stats[key]
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return self._stats[key]
|
||||
|
||||
def items(self) -> ItemsView[str, Any]:
|
||||
return self._stats.items()
|
||||
|
||||
def filter(self, keep: torch.Tensor) -> None:
|
||||
for k, v in self._stats.items():
|
||||
if v is None:
|
||||
self._stats[k] = None
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = v[keep.detach().cpu().numpy()]
|
||||
elif isinstance(v, list) and keep.dtype == torch.bool:
|
||||
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = [v[i] for i in keep]
|
||||
else:
|
||||
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
||||
|
||||
def cat(self, new_stats: "MaskData") -> None:
|
||||
for k, v in new_stats.items():
|
||||
if k not in self._stats or self._stats[k] is None:
|
||||
self._stats[k] = deepcopy(v)
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = self._stats[k] + deepcopy(v)
|
||||
else:
|
||||
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
||||
|
||||
def to_numpy(self) -> None:
|
||||
for k, v in self._stats.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v.float().detach().cpu().numpy()
|
||||
|
||||
|
||||
def is_box_near_crop_edge(
|
||||
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
||||
) -> torch.Tensor:
|
||||
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
||||
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
||||
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
||||
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
||||
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
||||
return torch.any(near_crop_edge, dim=1)
|
||||
|
||||
|
||||
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
||||
box_xywh = deepcopy(box_xyxy)
|
||||
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
||||
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
||||
return box_xywh
|
||||
|
||||
|
||||
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
||||
assert len(args) > 0 and all(
|
||||
len(a) == len(args[0]) for a in args
|
||||
), "Batched iteration must have inputs of all the same size."
|
||||
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
||||
for b in range(n_batches):
|
||||
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
||||
|
||||
|
||||
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Encodes masks to an uncompressed RLE, in the format expected by
|
||||
pycoco tools.
|
||||
"""
|
||||
# Put in fortran order and flatten h,w
|
||||
b, h, w = tensor.shape
|
||||
tensor = tensor.permute(0, 2, 1).flatten(1)
|
||||
|
||||
# Compute change indices
|
||||
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
||||
change_indices = diff.nonzero()
|
||||
|
||||
# Encode run length
|
||||
out = []
|
||||
for i in range(b):
|
||||
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
||||
cur_idxs = torch.cat(
|
||||
[
|
||||
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||
cur_idxs + 1,
|
||||
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||
]
|
||||
)
|
||||
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
||||
counts = [] if tensor[i, 0] == 0 else [0]
|
||||
counts.extend(btw_idxs.detach().cpu().tolist())
|
||||
out.append({"size": [h, w], "counts": counts})
|
||||
return out
|
||||
|
||||
|
||||
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
||||
"""Compute a binary mask from an uncompressed RLE."""
|
||||
h, w = rle["size"]
|
||||
mask = np.empty(h * w, dtype=bool)
|
||||
idx = 0
|
||||
parity = False
|
||||
for count in rle["counts"]:
|
||||
mask[idx : idx + count] = parity
|
||||
idx += count
|
||||
parity ^= True
|
||||
mask = mask.reshape(w, h)
|
||||
return mask.transpose() # Put in C order
|
||||
|
||||
|
||||
def area_from_rle(rle: Dict[str, Any]) -> int:
|
||||
return sum(rle["counts"][1::2])
|
||||
|
||||
|
||||
def calculate_stability_score(
|
||||
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Computes the stability score for a batch of masks. The stability
|
||||
score is the IoU between the binary masks obtained by thresholding
|
||||
the predicted mask logits at high and low values.
|
||||
"""
|
||||
# One mask is always contained inside the other.
|
||||
# Save memory by preventing unnecessary cast to torch.int64
|
||||
intersections = (
|
||||
(masks > (mask_threshold + threshold_offset))
|
||||
.sum(-1, dtype=torch.int16)
|
||||
.sum(-1, dtype=torch.int32)
|
||||
)
|
||||
unions = (
|
||||
(masks > (mask_threshold - threshold_offset))
|
||||
.sum(-1, dtype=torch.int16)
|
||||
.sum(-1, dtype=torch.int32)
|
||||
)
|
||||
return intersections / unions
|
||||
|
||||
|
||||
def build_point_grid(n_per_side: int) -> np.ndarray:
|
||||
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
||||
offset = 1 / (2 * n_per_side)
|
||||
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
||||
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
||||
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
||||
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
||||
return points
|
||||
|
||||
|
||||
def build_all_layer_point_grids(
|
||||
n_per_side: int, n_layers: int, scale_per_layer: int
|
||||
) -> List[np.ndarray]:
|
||||
"""Generates point grids for all crop layers."""
|
||||
points_by_layer = []
|
||||
for i in range(n_layers + 1):
|
||||
n_points = int(n_per_side / (scale_per_layer**i))
|
||||
points_by_layer.append(build_point_grid(n_points))
|
||||
return points_by_layer
|
||||
|
||||
|
||||
def generate_crop_boxes(
|
||||
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
||||
) -> Tuple[List[List[int]], List[int]]:
|
||||
"""
|
||||
Generates a list of crop boxes of different sizes. Each layer
|
||||
has (2**i)**2 boxes for the ith layer.
|
||||
"""
|
||||
crop_boxes, layer_idxs = [], []
|
||||
im_h, im_w = im_size
|
||||
short_side = min(im_h, im_w)
|
||||
|
||||
# Original image
|
||||
crop_boxes.append([0, 0, im_w, im_h])
|
||||
layer_idxs.append(0)
|
||||
|
||||
def crop_len(orig_len, n_crops, overlap):
|
||||
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
||||
|
||||
for i_layer in range(n_layers):
|
||||
n_crops_per_side = 2 ** (i_layer + 1)
|
||||
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
||||
|
||||
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
||||
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
||||
|
||||
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
||||
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
||||
|
||||
# Crops in XYWH format
|
||||
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
||||
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
||||
crop_boxes.append(box)
|
||||
layer_idxs.append(i_layer + 1)
|
||||
|
||||
return crop_boxes, layer_idxs
|
||||
|
||||
|
||||
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
||||
# Check if boxes has a channel dimension
|
||||
if len(boxes.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return boxes + offset
|
||||
|
||||
|
||||
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0]], device=points.device)
|
||||
# Check if points has a channel dimension
|
||||
if len(points.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return points + offset
|
||||
|
||||
|
||||
def uncrop_masks(
|
||||
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
||||
) -> torch.Tensor:
|
||||
x0, y0, x1, y1 = crop_box
|
||||
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
||||
return masks
|
||||
# Coordinate transform masks
|
||||
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
||||
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
||||
return torch.nn.functional.pad(masks, pad, value=0)
|
||||
|
||||
|
||||
def remove_small_regions(
|
||||
mask: np.ndarray, area_thresh: float, mode: str
|
||||
) -> Tuple[np.ndarray, bool]:
|
||||
"""
|
||||
Removes small disconnected regions and holes in a mask. Returns the
|
||||
mask and an indicator of if the mask has been modified.
|
||||
"""
|
||||
import cv2 # type: ignore
|
||||
|
||||
assert mode in ["holes", "islands"]
|
||||
correct_holes = mode == "holes"
|
||||
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
||||
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
||||
sizes = stats[:, -1][1:] # Row 0 is background label
|
||||
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
||||
if len(small_regions) == 0:
|
||||
return mask, False
|
||||
fill_labels = [0] + small_regions
|
||||
if not correct_holes:
|
||||
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
||||
# If every region is below threshold, keep largest
|
||||
if len(fill_labels) == 0:
|
||||
fill_labels = [int(np.argmax(sizes)) + 1]
|
||||
mask = np.isin(regions, fill_labels)
|
||||
return mask, True
|
||||
|
||||
|
||||
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
||||
from pycocotools import mask as mask_utils # type: ignore
|
||||
|
||||
h, w = uncompressed_rle["size"]
|
||||
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
||||
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
||||
return rle
|
||||
|
||||
|
||||
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
||||
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
||||
"""
|
||||
# torch.max below raises an error on empty inputs, just skip in this case
|
||||
if torch.numel(masks) == 0:
|
||||
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
||||
|
||||
# Normalize shape to CxHxW
|
||||
shape = masks.shape
|
||||
h, w = shape[-2:]
|
||||
if len(shape) > 2:
|
||||
masks = masks.flatten(0, -3)
|
||||
else:
|
||||
masks = masks.unsqueeze(0)
|
||||
|
||||
# Get top and bottom edges
|
||||
in_height, _ = torch.max(masks, dim=-1)
|
||||
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
||||
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
||||
in_height_coords = in_height_coords + h * (~in_height)
|
||||
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
||||
|
||||
# Get left and right edges
|
||||
in_width, _ = torch.max(masks, dim=-2)
|
||||
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
||||
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
||||
in_width_coords = in_width_coords + w * (~in_width)
|
||||
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
||||
|
||||
# If the mask is empty the right edge will be to the left of the left edge.
|
||||
# Replace these boxes with [0, 0, 0, 0]
|
||||
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
||||
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
||||
out = out * (~empty_filter).unsqueeze(-1)
|
||||
|
||||
# Return to original shape
|
||||
if len(shape) > 2:
|
||||
out = out.reshape(*shape[:-2], 4)
|
||||
else:
|
||||
out = out[0]
|
||||
|
||||
return out
|
324
sam2/sam2/utils/kalman_filter.py
Normal file
324
sam2/sam2/utils/kalman_filter.py
Normal file
@@ -0,0 +1,324 @@
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
|
||||
|
||||
"""
|
||||
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
||||
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
||||
function and used as Mahalanobis gating threshold.
|
||||
"""
|
||||
chi2inv95 = {
|
||||
1: 3.8415,
|
||||
2: 5.9915,
|
||||
3: 7.8147,
|
||||
4: 9.4877,
|
||||
5: 11.070,
|
||||
6: 12.592,
|
||||
7: 14.067,
|
||||
8: 15.507,
|
||||
9: 16.919}
|
||||
|
||||
|
||||
class KalmanFilter(object):
|
||||
"""
|
||||
A simple Kalman filter for tracking bounding boxes in image space.
|
||||
|
||||
The 8-dimensional state space
|
||||
|
||||
x, y, a, h, vx, vy, va, vh
|
||||
|
||||
contains the bounding box center position (x, y), aspect ratio a, height h,
|
||||
and their respective velocities.
|
||||
|
||||
Object motion follows a constant velocity model. The bounding box location
|
||||
(x, y, a, h) is taken as direct observation of the state space (linear
|
||||
observation model).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
ndim, dt = 4, 1.
|
||||
|
||||
# Create Kalman filter model matrices.
|
||||
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
||||
for i in range(ndim):
|
||||
self._motion_mat[i, ndim + i] = dt
|
||||
self._update_mat = np.eye(ndim, 2 * ndim)
|
||||
|
||||
# Motion and observation uncertainty are chosen relative to the current
|
||||
# state estimate. These weights control the amount of uncertainty in
|
||||
# the model. This is a bit hacky.
|
||||
self._std_weight_position = 1. / 20
|
||||
self._std_weight_velocity = 1. / 160
|
||||
|
||||
def initiate(self, measurement):
|
||||
"""Create track from unassociated measurement.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurement : ndarray
|
||||
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
||||
aspect ratio a, and height h.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
||||
dimensional) of the new track. Unobserved velocities are initialized
|
||||
to 0 mean.
|
||||
|
||||
"""
|
||||
mean_pos = measurement
|
||||
mean_vel = np.zeros_like(mean_pos)
|
||||
mean = np.r_[mean_pos, mean_vel]
|
||||
|
||||
std = [
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
1e-2,
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
1e-5,
|
||||
10 * self._std_weight_velocity * measurement[3]]
|
||||
covariance = np.diag(np.square(std))
|
||||
return mean, covariance
|
||||
|
||||
def predict(self, mean, covariance):
|
||||
"""Run Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The 8 dimensional mean vector of the object state at the previous
|
||||
time step.
|
||||
covariance : ndarray
|
||||
The 8x8 dimensional covariance matrix of the object state at the
|
||||
previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted
|
||||
state. Unobserved velocities are initialized to 0 mean.
|
||||
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-2,
|
||||
self._std_weight_position * mean[3]]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[3],
|
||||
1e-5,
|
||||
self._std_weight_velocity * mean[3]]
|
||||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||
|
||||
#mean = np.dot(self._motion_mat, mean)
|
||||
mean = np.dot(mean, self._motion_mat.T)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def project(self, mean, covariance):
|
||||
"""Project state distribution to measurement space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The state's mean vector (8 dimensional array).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the projected mean and covariance matrix of the given state
|
||||
estimate.
|
||||
|
||||
"""
|
||||
std = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-1,
|
||||
self._std_weight_position * mean[3]]
|
||||
innovation_cov = np.diag(np.square(std))
|
||||
|
||||
mean = np.dot(self._update_mat, mean)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._update_mat, covariance, self._update_mat.T))
|
||||
return mean, covariance + innovation_cov
|
||||
|
||||
def multi_predict(self, mean, covariance):
|
||||
"""Run Kalman filter prediction step (Vectorized version).
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The Nx8 dimensional mean matrix of the object states at the previous
|
||||
time step.
|
||||
covariance : ndarray
|
||||
The Nx8x8 dimensional covariance matrics of the object states at the
|
||||
previous time step.
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted
|
||||
state. Unobserved velocities are initialized to 0 mean.
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[:, 3],
|
||||
self._std_weight_position * mean[:, 3],
|
||||
1e-2 * np.ones_like(mean[:, 3]),
|
||||
self._std_weight_position * mean[:, 3]]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
self._std_weight_velocity * mean[:, 3],
|
||||
1e-5 * np.ones_like(mean[:, 3]),
|
||||
self._std_weight_velocity * mean[:, 3]]
|
||||
sqr = np.square(np.r_[std_pos, std_vel]).T
|
||||
|
||||
motion_cov = []
|
||||
for i in range(len(mean)):
|
||||
motion_cov.append(np.diag(sqr[i]))
|
||||
motion_cov = np.asarray(motion_cov)
|
||||
|
||||
mean = np.dot(mean, self._motion_mat.T)
|
||||
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
|
||||
covariance = np.dot(left, self._motion_mat.T) + motion_cov
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def update(self, mean, covariance, measurement):
|
||||
"""Run Kalman filter correction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The predicted state's mean vector (8 dimensional).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
measurement : ndarray
|
||||
The 4 dimensional measurement vector (x, y, a, h), where (x, y)
|
||||
is the center position, a the aspect ratio, and h the height of the
|
||||
bounding box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the measurement-corrected state distribution.
|
||||
|
||||
"""
|
||||
projected_mean, projected_cov = self.project(mean, covariance)
|
||||
|
||||
chol_factor, lower = scipy.linalg.cho_factor(
|
||||
projected_cov, lower=True, check_finite=False)
|
||||
kalman_gain = scipy.linalg.cho_solve(
|
||||
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
|
||||
check_finite=False).T
|
||||
innovation = measurement - projected_mean
|
||||
|
||||
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
||||
new_covariance = covariance - np.linalg.multi_dot((
|
||||
kalman_gain, projected_cov, kalman_gain.T))
|
||||
return new_mean, new_covariance
|
||||
|
||||
def gating_distance(self, mean, covariance, measurements,
|
||||
only_position=False, metric='maha'):
|
||||
"""Compute gating distance between state distribution and measurements.
|
||||
A suitable distance threshold can be obtained from `chi2inv95`. If
|
||||
`only_position` is False, the chi-square distribution has 4 degrees of
|
||||
freedom, otherwise 2.
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector over the state distribution (8 dimensional).
|
||||
covariance : ndarray
|
||||
Covariance of the state distribution (8x8 dimensional).
|
||||
measurements : ndarray
|
||||
An Nx4 dimensional matrix of N measurements, each in
|
||||
format (x, y, a, h) where (x, y) is the bounding box center
|
||||
position, a the aspect ratio, and h the height.
|
||||
only_position : Optional[bool]
|
||||
If True, distance computation is done with respect to the bounding
|
||||
box center position only.
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns an array of length N, where the i-th element contains the
|
||||
squared Mahalanobis distance between (mean, covariance) and
|
||||
`measurements[i]`.
|
||||
"""
|
||||
mean, covariance = self.project(mean, covariance)
|
||||
if only_position:
|
||||
mean, covariance = mean[:2], covariance[:2, :2]
|
||||
measurements = measurements[:, :2]
|
||||
|
||||
d = measurements - mean
|
||||
if metric == 'gaussian':
|
||||
return np.sum(d * d, axis=1)
|
||||
elif metric == 'maha':
|
||||
cholesky_factor = np.linalg.cholesky(covariance)
|
||||
z = scipy.linalg.solve_triangular(
|
||||
cholesky_factor, d.T, lower=True, check_finite=False,
|
||||
overwrite_b=True)
|
||||
squared_maha = np.sum(z * z, axis=0)
|
||||
return squared_maha
|
||||
else:
|
||||
raise ValueError('invalid distance metric')
|
||||
|
||||
def compute_iou(self, pred_bbox, bboxes):
|
||||
"""
|
||||
Compute the IoU between the bbox and the bboxes
|
||||
"""
|
||||
ious = []
|
||||
pred_bbox = self.xyah_to_xyxy(pred_bbox)
|
||||
for bbox in bboxes:
|
||||
iou = self._compute_iou(pred_bbox, bbox)
|
||||
ious.append(iou)
|
||||
return ious
|
||||
|
||||
def _compute_iou(self, bbox1, bbox2):
|
||||
"""
|
||||
Compute the Intersection over Union (IoU) of two bounding boxes.
|
||||
Parameters
|
||||
----------
|
||||
bbox1 : list
|
||||
The first bounding box in the format [x1, y1, x2, y2].
|
||||
bbox2 : list
|
||||
The second bounding box in the format [x1, y1, x2, y2].
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
The IoU of the two bounding boxes.
|
||||
"""
|
||||
if bbox2 == [0, 0, 0, 0]:
|
||||
return 0
|
||||
x1, y1, x2, y2 = bbox1
|
||||
x1_, y1_, x2_, y2_ = bbox2
|
||||
# Calculate intersection area
|
||||
intersection_area = max(0, min(x2, x2_) - max(x1, x1_)) * max(0, min(y2, y2_) - max(y1, y1_))
|
||||
# Calculate union area
|
||||
union_area = (x2 - x1) * (y2 - y1) + (x2_ - x1_) * (y2_ - y1_) - intersection_area
|
||||
# Calculate IoU
|
||||
iou = intersection_area / union_area if union_area != 0 else 0
|
||||
return iou
|
||||
|
||||
def xyxy_to_xyah(self, bbox):
|
||||
x1, y1, x2, y2 = bbox
|
||||
xc = (x1 + x2) / 2
|
||||
yc = (y1 + y2) / 2
|
||||
w = x2 - x1
|
||||
h = y2 - y1
|
||||
if h == 0:
|
||||
h = 1
|
||||
return [xc, yc, w / h, h]
|
||||
|
||||
def xyah_to_xyxy(self, bbox):
|
||||
xc, yc, a, h = bbox
|
||||
x1 = xc - a * h / 2
|
||||
y1 = yc - h / 2
|
||||
x2 = xc + a * h / 2
|
||||
y2 = yc + h / 2
|
||||
return [x1, y1, x2, y2]
|
349
sam2/sam2/utils/misc.py
Normal file
349
sam2/sam2/utils/misc.py
Normal file
@@ -0,0 +1,349 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_sdpa_settings():
|
||||
if torch.cuda.is_available():
|
||||
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
||||
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
||||
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
||||
if not use_flash_attn:
|
||||
warnings.warn(
|
||||
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
||||
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
||||
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
||||
if pytorch_version < (2, 2):
|
||||
warnings.warn(
|
||||
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
||||
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
||||
else:
|
||||
old_gpu = True
|
||||
use_flash_attn = False
|
||||
math_kernel_on = True
|
||||
|
||||
return old_gpu, use_flash_attn, math_kernel_on
|
||||
|
||||
|
||||
def get_connected_components(mask):
|
||||
"""
|
||||
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
||||
|
||||
Inputs:
|
||||
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
||||
background.
|
||||
|
||||
Outputs:
|
||||
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
||||
for foreground pixels and 0 for background pixels.
|
||||
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
||||
components for foreground pixels and 0 for background pixels.
|
||||
"""
|
||||
from sam2 import _C
|
||||
|
||||
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
||||
|
||||
|
||||
def mask_to_box(masks: torch.Tensor):
|
||||
"""
|
||||
compute bounding box given an input mask
|
||||
|
||||
Inputs:
|
||||
- masks: [B, 1, H, W] masks, dtype=torch.Tensor
|
||||
|
||||
Returns:
|
||||
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
||||
"""
|
||||
B, _, h, w = masks.shape
|
||||
device = masks.device
|
||||
xs = torch.arange(w, device=device, dtype=torch.int32)
|
||||
ys = torch.arange(h, device=device, dtype=torch.int32)
|
||||
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
||||
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
||||
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
||||
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
||||
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
||||
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
||||
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
||||
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
||||
|
||||
return bbox_coords
|
||||
|
||||
|
||||
def _load_img_as_tensor(img_path, image_size):
|
||||
img_pil = Image.open(img_path)
|
||||
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
||||
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
||||
img_np = img_np / 255.0
|
||||
else:
|
||||
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
||||
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
||||
video_width, video_height = img_pil.size # the original video size
|
||||
return img, video_height, video_width
|
||||
|
||||
|
||||
class AsyncVideoFrameLoader:
|
||||
"""
|
||||
A list of video frames to be load asynchronously without blocking session start.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
img_paths,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean,
|
||||
img_std,
|
||||
compute_device,
|
||||
):
|
||||
self.img_paths = img_paths
|
||||
self.image_size = image_size
|
||||
self.offload_video_to_cpu = offload_video_to_cpu
|
||||
self.img_mean = img_mean
|
||||
self.img_std = img_std
|
||||
# items in `self.images` will be loaded asynchronously
|
||||
self.images = [None] * len(img_paths)
|
||||
# catch and raise any exceptions in the async loading thread
|
||||
self.exception = None
|
||||
# video_height and video_width be filled when loading the first image
|
||||
self.video_height = None
|
||||
self.video_width = None
|
||||
self.compute_device = compute_device
|
||||
|
||||
# load the first frame to fill video_height and video_width and also
|
||||
# to cache it (since it's most likely where the user will click)
|
||||
self.__getitem__(0)
|
||||
|
||||
# load the rest of frames asynchronously without blocking the session start
|
||||
def _load_frames():
|
||||
try:
|
||||
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
||||
self.__getitem__(n)
|
||||
except Exception as e:
|
||||
self.exception = e
|
||||
|
||||
self.thread = Thread(target=_load_frames, daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.exception is not None:
|
||||
raise RuntimeError("Failure in frame loading thread") from self.exception
|
||||
|
||||
img = self.images[index]
|
||||
if img is not None:
|
||||
return img
|
||||
|
||||
img, video_height, video_width = _load_img_as_tensor(
|
||||
self.img_paths[index], self.image_size
|
||||
)
|
||||
self.video_height = video_height
|
||||
self.video_width = video_width
|
||||
# normalize by mean and std
|
||||
img -= self.img_mean
|
||||
img /= self.img_std
|
||||
if not self.offload_video_to_cpu:
|
||||
img = img.to(self.compute_device, non_blocking=True)
|
||||
# self.images[index] = img
|
||||
return img
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
||||
|
||||
def load_video_frames(
|
||||
video_path,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean=(0.485, 0.456, 0.406),
|
||||
img_std=(0.229, 0.224, 0.225),
|
||||
async_loading_frames=False,
|
||||
compute_device=torch.device("cuda"),
|
||||
):
|
||||
"""
|
||||
Load the video frames from video_path. The frames are resized to image_size as in
|
||||
the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
|
||||
"""
|
||||
is_bytes = isinstance(video_path, bytes)
|
||||
is_str = isinstance(video_path, str)
|
||||
is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
|
||||
if is_bytes or is_mp4_path:
|
||||
return load_video_frames_from_video_file(
|
||||
video_path=video_path,
|
||||
image_size=image_size,
|
||||
offload_video_to_cpu=offload_video_to_cpu,
|
||||
img_mean=img_mean,
|
||||
img_std=img_std,
|
||||
compute_device=compute_device,
|
||||
)
|
||||
elif is_str and os.path.isdir(video_path):
|
||||
return load_video_frames_from_jpg_images(
|
||||
video_path=video_path,
|
||||
image_size=image_size,
|
||||
offload_video_to_cpu=offload_video_to_cpu,
|
||||
img_mean=img_mean,
|
||||
img_std=img_std,
|
||||
async_loading_frames=async_loading_frames,
|
||||
compute_device=compute_device,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Only MP4 video and JPEG folder are supported at this moment"
|
||||
)
|
||||
|
||||
|
||||
def load_video_frames_from_jpg_images(
|
||||
video_path,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean=(0.485, 0.456, 0.406),
|
||||
img_std=(0.229, 0.224, 0.225),
|
||||
async_loading_frames=False,
|
||||
compute_device=torch.device("cuda"),
|
||||
):
|
||||
"""
|
||||
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
||||
|
||||
The frames are resized to image_size x image_size and are loaded to GPU if
|
||||
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
||||
|
||||
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
||||
"""
|
||||
if isinstance(video_path, str) and os.path.isdir(video_path):
|
||||
jpg_folder = video_path
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Only JPEG frames are supported at this moment. For video files, you may use "
|
||||
"ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
|
||||
"```\n"
|
||||
"ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
|
||||
"```\n"
|
||||
"where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
|
||||
"ffmpeg to start the JPEG file from 00000.jpg."
|
||||
)
|
||||
|
||||
frame_names = [
|
||||
p
|
||||
for p in os.listdir(jpg_folder)
|
||||
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
||||
]
|
||||
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
||||
num_frames = len(frame_names)
|
||||
if num_frames == 0:
|
||||
raise RuntimeError(f"no images found in {jpg_folder}")
|
||||
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
||||
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
||||
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
||||
|
||||
if async_loading_frames:
|
||||
lazy_images = AsyncVideoFrameLoader(
|
||||
img_paths,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean,
|
||||
img_std,
|
||||
compute_device,
|
||||
)
|
||||
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
||||
|
||||
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
||||
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
||||
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
||||
if not offload_video_to_cpu:
|
||||
images = images.to(compute_device)
|
||||
img_mean = img_mean.to(compute_device)
|
||||
img_std = img_std.to(compute_device)
|
||||
# normalize by mean and std
|
||||
images -= img_mean
|
||||
images /= img_std
|
||||
return images, video_height, video_width
|
||||
|
||||
|
||||
def load_video_frames_from_video_file(
|
||||
video_path,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean=(0.485, 0.456, 0.406),
|
||||
img_std=(0.229, 0.224, 0.225),
|
||||
compute_device=torch.device("cuda"),
|
||||
):
|
||||
"""Load the video frames from a video file."""
|
||||
import decord
|
||||
|
||||
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
||||
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
||||
# Get the original video height and width
|
||||
decord.bridge.set_bridge("torch")
|
||||
video_height, video_width, _ = decord.VideoReader(video_path).next().shape
|
||||
# Iterate over all frames in the video
|
||||
images = []
|
||||
for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
|
||||
images.append(frame.permute(2, 0, 1))
|
||||
|
||||
images = torch.stack(images, dim=0).float() / 255.0
|
||||
if not offload_video_to_cpu:
|
||||
images = images.to(compute_device)
|
||||
img_mean = img_mean.to(compute_device)
|
||||
img_std = img_std.to(compute_device)
|
||||
# normalize by mean and std
|
||||
images -= img_mean
|
||||
images /= img_std
|
||||
return images, video_height, video_width
|
||||
|
||||
|
||||
def fill_holes_in_mask_scores(mask, max_area):
|
||||
"""
|
||||
A post processor to fill small holes in mask scores with area under `max_area`.
|
||||
"""
|
||||
# Holes are those connected components in background with area <= self.max_area
|
||||
# (background regions are those with mask scores <= 0)
|
||||
assert max_area > 0, "max_area must be positive"
|
||||
|
||||
input_mask = mask
|
||||
try:
|
||||
labels, areas = get_connected_components(mask <= 0)
|
||||
is_hole = (labels > 0) & (areas <= max_area)
|
||||
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
||||
mask = torch.where(is_hole, 0.1, mask)
|
||||
except Exception as e:
|
||||
# Skip the post-processing step on removing small holes if the CUDA kernel fails
|
||||
warnings.warn(
|
||||
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
||||
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
||||
"functionality may be limited (which doesn't affect the results in most cases; see "
|
||||
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
mask = input_mask
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def concat_points(old_point_inputs, new_points, new_labels):
|
||||
"""Add new points and labels to previous point inputs (add at the end)."""
|
||||
if old_point_inputs is None:
|
||||
points, labels = new_points, new_labels
|
||||
else:
|
||||
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
||||
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
||||
|
||||
return {"point_coords": points, "point_labels": labels}
|
118
sam2/sam2/utils/transforms.py
Normal file
118
sam2/sam2/utils/transforms.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torchvision.transforms import Normalize, Resize, ToTensor
|
||||
|
||||
|
||||
class SAM2Transforms(nn.Module):
|
||||
def __init__(
|
||||
self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
|
||||
):
|
||||
"""
|
||||
Transforms for SAM2.
|
||||
"""
|
||||
super().__init__()
|
||||
self.resolution = resolution
|
||||
self.mask_threshold = mask_threshold
|
||||
self.max_hole_area = max_hole_area
|
||||
self.max_sprinkle_area = max_sprinkle_area
|
||||
self.mean = [0.485, 0.456, 0.406]
|
||||
self.std = [0.229, 0.224, 0.225]
|
||||
self.to_tensor = ToTensor()
|
||||
self.transforms = torch.jit.script(
|
||||
nn.Sequential(
|
||||
Resize((self.resolution, self.resolution)),
|
||||
Normalize(self.mean, self.std),
|
||||
)
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.to_tensor(x)
|
||||
return self.transforms(x)
|
||||
|
||||
def forward_batch(self, img_list):
|
||||
img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
|
||||
img_batch = torch.stack(img_batch, dim=0)
|
||||
return img_batch
|
||||
|
||||
def transform_coords(
|
||||
self, coords: torch.Tensor, normalize=False, orig_hw=None
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
|
||||
If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
||||
|
||||
Returns
|
||||
Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
|
||||
"""
|
||||
if normalize:
|
||||
assert orig_hw is not None
|
||||
h, w = orig_hw
|
||||
coords = coords.clone()
|
||||
coords[..., 0] = coords[..., 0] / w
|
||||
coords[..., 1] = coords[..., 1] / h
|
||||
|
||||
coords = coords * self.resolution # unnormalize coords
|
||||
return coords
|
||||
|
||||
def transform_boxes(
|
||||
self, boxes: torch.Tensor, normalize=False, orig_hw=None
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
|
||||
if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
||||
"""
|
||||
boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
|
||||
return boxes
|
||||
|
||||
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
|
||||
"""
|
||||
Perform PostProcessing on output masks.
|
||||
"""
|
||||
from sam2.utils.misc import get_connected_components
|
||||
|
||||
masks = masks.float()
|
||||
input_masks = masks
|
||||
mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image
|
||||
try:
|
||||
if self.max_hole_area > 0:
|
||||
# Holes are those connected components in background with area <= self.fill_hole_area
|
||||
# (background regions are those with mask scores <= self.mask_threshold)
|
||||
labels, areas = get_connected_components(
|
||||
mask_flat <= self.mask_threshold
|
||||
)
|
||||
is_hole = (labels > 0) & (areas <= self.max_hole_area)
|
||||
is_hole = is_hole.reshape_as(masks)
|
||||
# We fill holes with a small positive mask score (10.0) to change them to foreground.
|
||||
masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
|
||||
|
||||
if self.max_sprinkle_area > 0:
|
||||
labels, areas = get_connected_components(
|
||||
mask_flat > self.mask_threshold
|
||||
)
|
||||
is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
|
||||
is_hole = is_hole.reshape_as(masks)
|
||||
# We fill holes with negative mask score (-10.0) to change them to background.
|
||||
masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
|
||||
except Exception as e:
|
||||
# Skip the post-processing step if the CUDA kernel fails
|
||||
warnings.warn(
|
||||
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
||||
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
||||
"functionality may be limited (which doesn't affect the results in most cases; see "
|
||||
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
masks = input_masks
|
||||
|
||||
masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
|
||||
return masks
|
Reference in New Issue
Block a user