init commit of samurai

This commit is contained in:
Cheng-Yen Yang
2024-11-19 22:12:54 -08:00
parent f65f4ba181
commit c17e4cecc0
679 changed files with 123982 additions and 0 deletions

1
lib/utils/__init__.py Normal file
View File

@@ -0,0 +1 @@
from .tensor import TensorDict, TensorList

106
lib/utils/box_ops.py Normal file
View File

@@ -0,0 +1,106 @@
import torch
from torchvision.ops.boxes import box_area
import numpy as np
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xywh_to_xyxy(x):
x1, y1, w, h = x.unbind(-1)
b = [x1, y1, x1 + w, y1 + h]
return torch.stack(b, dim=-1)
def box_xyxy_to_xywh(x):
x1, y1, x2, y2 = x.unbind(-1)
b = [x1, y1, x2 - x1, y2 - y1]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2,
(x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
# modified from torchvision to also return the union
'''Note that this function only supports shape (N,4)'''
def box_iou(boxes1, boxes2):
"""
:param boxes1: (N, 4) (x1,y1,x2,y2)
:param boxes2: (N, 4) (x1,y1,x2,y2)
:return:
"""
area1 = box_area(boxes1) # (N,)
area2 = box_area(boxes2) # (N,)
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # (N,2)
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # (N,2)
wh = (rb - lt).clamp(min=0) # (N,2)
inter = wh[:, 0] * wh[:, 1] # (N,)
union = area1 + area2 - inter
iou = inter / union
return iou, union
'''Note that this implementation is different from DETR's'''
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
boxes1: (N, 4)
boxes2: (N, 4)
"""
# degenerate boxes gives inf / nan results
# so do an early check
# try:
#assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
# assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
iou, union = box_iou(boxes1, boxes2) # (N,)
lt = torch.min(boxes1[:, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # (N,2)
area = wh[:, 0] * wh[:, 1] # (N,)
return iou - (area - union) / area, iou
def giou_loss(boxes1, boxes2):
"""
:param boxes1: (N, 4) (x1,y1,x2,y2)
:param boxes2: (N, 4) (x1,y1,x2,y2)
:return:
"""
giou, iou = generalized_box_iou(boxes1, boxes2)
return (1 - giou).mean(), iou
def clip_box(box: list, H, W, margin=0):
x1, y1, w, h = box
x2, y2 = x1 + w, y1 + h
x1 = min(max(0, x1), W-margin)
x2 = min(max(margin, x2), W)
y1 = min(max(0, y1), H-margin)
y2 = min(max(margin, y2), H)
w = max(margin, x2-x1)
h = max(margin, y2-y1)
return [x1, y1, w, h]

80
lib/utils/ce_utils.py Normal file
View File

@@ -0,0 +1,80 @@
import math
import torch
import torch.nn.functional as F
def generate_bbox_mask(bbox_mask, bbox):
b, h, w = bbox_mask.shape
for i in range(b):
bbox_i = bbox[i].cpu().tolist()
bbox_mask[i, int(bbox_i[1]):int(bbox_i[1] + bbox_i[3] - 1), int(bbox_i[0]):int(bbox_i[0] + bbox_i[2] - 1)] = 1
return bbox_mask
def generate_mask_cond(cfg, bs, device, gt_bbox):
template_size = cfg.DATA.TEMPLATE.SIZE
stride = cfg.MODEL.BACKBONE.STRIDE
template_feat_size = template_size // stride
if cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'ALL':
box_mask_z = None
elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_POINT':
if template_feat_size == 8:
index = slice(3, 4)
elif template_feat_size == 12:
index = slice(5, 6)
elif template_feat_size == 7:
index = slice(3, 4)
elif template_feat_size == 14:
index = slice(6, 7)
else:
raise NotImplementedError
box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device)
box_mask_z[:, index, index] = 1
box_mask_z = box_mask_z.flatten(1).to(torch.bool)
elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'CTR_REC':
# use fixed 4x4 region, 3:5 for 8x8
# use fixed 4x4 region 5:6 for 12x12
if template_feat_size == 8:
index = slice(3, 5)
elif template_feat_size == 12:
index = slice(5, 7)
elif template_feat_size == 7:
index = slice(3, 4)
else:
raise NotImplementedError
box_mask_z = torch.zeros([bs, template_feat_size, template_feat_size], device=device)
box_mask_z[:, index, index] = 1
box_mask_z = box_mask_z.flatten(1).to(torch.bool)
elif cfg.MODEL.BACKBONE.CE_TEMPLATE_RANGE == 'GT_BOX':
box_mask_z = torch.zeros([bs, template_size, template_size], device=device)
# box_mask_z_ori = data['template_seg'][0].view(-1, 1, *data['template_seg'].shape[2:]) # (batch, 1, 128, 128)
box_mask_z = generate_bbox_mask(box_mask_z, gt_bbox * template_size).unsqueeze(1).to(
torch.float) # (batch, 1, 128, 128)
# box_mask_z_vis = box_mask_z.cpu().numpy()
box_mask_z = F.interpolate(box_mask_z, scale_factor=1. / cfg.MODEL.BACKBONE.STRIDE, mode='bilinear',
align_corners=False)
box_mask_z = box_mask_z.flatten(1).to(torch.bool)
# box_mask_z_vis = box_mask_z[:, 0, ...].cpu().numpy()
# gaussian_maps_vis = generate_heatmap(data['template_anno'], self.cfg.DATA.TEMPLATE.SIZE, self.cfg.MODEL.STRIDE)[0].cpu().numpy()
else:
raise NotImplementedError
return box_mask_z
def adjust_keep_rate(epoch, warmup_epochs, total_epochs, ITERS_PER_EPOCH, base_keep_rate=0.5, max_keep_rate=1, iters=-1):
if epoch < warmup_epochs:
return 1
if epoch >= total_epochs:
return base_keep_rate
if iters == -1:
iters = epoch * ITERS_PER_EPOCH
total_iters = ITERS_PER_EPOCH * (total_epochs - warmup_epochs)
iters = iters - ITERS_PER_EPOCH * warmup_epochs
keep_rate = base_keep_rate + (max_keep_rate - base_keep_rate) \
* (math.cos(iters / total_iters * math.pi) + 1) * 0.5
return keep_rate

63
lib/utils/focal_loss.py Normal file
View File

@@ -0,0 +1,63 @@
from abc import ABC
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module, ABC):
def __init__(self, alpha=2, beta=4):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, prediction, target):
positive_index = target.eq(1).float()
negative_index = target.lt(1).float()
negative_weights = torch.pow(1 - target, self.beta)
# clamp min value is set to 1e-12 to maintain the numerical stability
prediction = torch.clamp(prediction, 1e-12)
positive_loss = torch.log(prediction) * torch.pow(1 - prediction, self.alpha) * positive_index
negative_loss = torch.log(1 - prediction) * torch.pow(prediction,
self.alpha) * negative_weights * negative_index
num_positive = positive_index.float().sum()
positive_loss = positive_loss.sum()
negative_loss = negative_loss.sum()
if num_positive == 0:
loss = -negative_loss
else:
loss = -(positive_loss + negative_loss) / num_positive
return loss
class LBHinge(nn.Module):
"""Loss that uses a 'hinge' on the lower bound.
This means that for samples with a label value smaller than the threshold, the loss is zero if the prediction is
also smaller than that threshold.
args:
error_matric: What base loss to use (MSE by default).
threshold: Threshold to use for the hinge.
clip: Clip the loss if it is above this value.
"""
def __init__(self, error_metric=nn.MSELoss(), threshold=None, clip=None):
super().__init__()
self.error_metric = error_metric
self.threshold = threshold if threshold is not None else -100
self.clip = clip
def forward(self, prediction, label, target_bb=None):
negative_mask = (label < self.threshold).float()
positive_mask = (1.0 - negative_mask)
prediction = negative_mask * F.relu(prediction) + positive_mask * prediction
loss = self.error_metric(prediction, positive_mask * label)
if self.clip is not None:
loss = torch.min(loss, torch.tensor([self.clip], device=loss.device))
return loss

150
lib/utils/heapmap_utils.py Normal file
View File

@@ -0,0 +1,150 @@
import numpy as np
import torch
def generate_heatmap(bboxes, patch_size=320, stride=16):
"""
Generate ground truth heatmap same as CenterNet
Args:
bboxes (torch.Tensor): shape of [num_search, bs, 4]
Returns:
gaussian_maps: list of generated heatmap
"""
gaussian_maps = []
heatmap_size = patch_size // stride
for single_patch_bboxes in bboxes:
bs = single_patch_bboxes.shape[0]
gt_scoremap = torch.zeros(bs, heatmap_size, heatmap_size)
classes = torch.arange(bs).to(torch.long)
bbox = single_patch_bboxes * heatmap_size
wh = bbox[:, 2:]
centers_int = (bbox[:, :2] + wh / 2).round()
CenterNetHeatMap.generate_score_map(gt_scoremap, classes, wh, centers_int, 0.7)
gaussian_maps.append(gt_scoremap.to(bbox.device))
return gaussian_maps
class CenterNetHeatMap(object):
@staticmethod
def generate_score_map(fmap, gt_class, gt_wh, centers_int, min_overlap):
radius = CenterNetHeatMap.get_gaussian_radius(gt_wh, min_overlap)
radius = torch.clamp_min(radius, 0)
radius = radius.type(torch.int).cpu().numpy()
for i in range(gt_class.shape[0]):
channel_index = gt_class[i]
CenterNetHeatMap.draw_gaussian(fmap[channel_index], centers_int[i], radius[i])
@staticmethod
def get_gaussian_radius(box_size, min_overlap):
"""
copyed from CornerNet
box_size (w, h), it could be a torch.Tensor, numpy.ndarray, list or tuple
notice: we are using a bug-version, please refer to fix bug version in CornerNet
"""
# box_tensor = torch.Tensor(box_size)
box_tensor = box_size
width, height = box_tensor[..., 0], box_tensor[..., 1]
a1 = 1
b1 = height + width
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = torch.sqrt(b1 ** 2 - 4 * a1 * c1)
r1 = (b1 + sq1) / 2
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = torch.sqrt(b2 ** 2 - 4 * a2 * c2)
r2 = (b2 + sq2) / 2
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = torch.sqrt(b3 ** 2 - 4 * a3 * c3)
r3 = (b3 + sq3) / 2
return torch.min(r1, torch.min(r2, r3))
@staticmethod
def gaussian2D(radius, sigma=1):
# m, n = [(s - 1.) / 2. for s in shape]
m, n = radius
y, x = np.ogrid[-m: m + 1, -n: n + 1]
gauss = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
gauss[gauss < np.finfo(gauss.dtype).eps * gauss.max()] = 0
return gauss
@staticmethod
def draw_gaussian(fmap, center, radius, k=1):
diameter = 2 * radius + 1
gaussian = CenterNetHeatMap.gaussian2D((radius, radius), sigma=diameter / 6)
gaussian = torch.Tensor(gaussian)
x, y = int(center[0]), int(center[1])
height, width = fmap.shape[:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_fmap = fmap[y - top: y + bottom, x - left: x + right]
masked_gaussian = gaussian[radius - top: radius + bottom, radius - left: radius + right]
if min(masked_gaussian.shape) > 0 and min(masked_fmap.shape) > 0:
masked_fmap = torch.max(masked_fmap, masked_gaussian * k)
fmap[y - top: y + bottom, x - left: x + right] = masked_fmap
# return fmap
def compute_grids(features, strides):
"""
grids regret to the input image size
"""
grids = []
for level, feature in enumerate(features):
h, w = feature.size()[-2:]
shifts_x = torch.arange(
0, w * strides[level],
step=strides[level],
dtype=torch.float32, device=feature.device)
shifts_y = torch.arange(
0, h * strides[level],
step=strides[level],
dtype=torch.float32, device=feature.device)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
grids_per_level = torch.stack((shift_x, shift_y), dim=1) + \
strides[level] // 2
grids.append(grids_per_level)
return grids
def get_center3x3(locations, centers, strides, range=3):
'''
Inputs:
locations: M x 2
centers: N x 2
strides: M
'''
range = (range - 1) / 2
M, N = locations.shape[0], centers.shape[0]
locations_expanded = locations.view(M, 1, 2).expand(M, N, 2) # M x N x 2
centers_expanded = centers.view(1, N, 2).expand(M, N, 2) # M x N x 2
strides_expanded = strides.view(M, 1, 1).expand(M, N, 2) # M x N
centers_discret = ((centers_expanded / strides_expanded).int() * strides_expanded).float() + \
strides_expanded / 2 # M x N x 2
dist_x = (locations_expanded[:, :, 0] - centers_discret[:, :, 0]).abs()
dist_y = (locations_expanded[:, :, 1] - centers_discret[:, :, 1]).abs()
return (dist_x <= strides_expanded[:, :, 0] * range) & \
(dist_y <= strides_expanded[:, :, 0] * range)
def get_pred(score_map_ctr, size_map, offset_map, feat_size):
max_score, idx = torch.max(score_map_ctr.flatten(1), dim=1, keepdim=True)
idx = idx.unsqueeze(1).expand(idx.shape[0], 2, 1)
size = size_map.flatten(2).gather(dim=2, index=idx).squeeze(-1)
offset = offset_map.flatten(2).gather(dim=2, index=idx).squeeze(-1)
return size * feat_size, offset

55
lib/utils/lmdb_utils.py Normal file
View File

@@ -0,0 +1,55 @@
import lmdb
import numpy as np
import cv2
import json
LMDB_ENVS = dict()
LMDB_HANDLES = dict()
LMDB_FILELISTS = dict()
def get_lmdb_handle(name):
global LMDB_HANDLES, LMDB_FILELISTS
item = LMDB_HANDLES.get(name, None)
if item is None:
env = lmdb.open(name, readonly=True, lock=False, readahead=False, meminit=False)
LMDB_ENVS[name] = env
item = env.begin(write=False)
LMDB_HANDLES[name] = item
return item
def decode_img(lmdb_fname, key_name):
handle = get_lmdb_handle(lmdb_fname)
binfile = handle.get(key_name.encode())
if binfile is None:
print("Illegal data detected. %s %s" % (lmdb_fname, key_name))
s = np.frombuffer(binfile, np.uint8)
x = cv2.cvtColor(cv2.imdecode(s, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
return x
def decode_str(lmdb_fname, key_name):
handle = get_lmdb_handle(lmdb_fname)
binfile = handle.get(key_name.encode())
string = binfile.decode()
return string
def decode_json(lmdb_fname, key_name):
return json.loads(decode_str(lmdb_fname, key_name))
if __name__ == "__main__":
lmdb_fname = "/data/sda/v-yanbi/iccv21/LittleBoy_clean/data/got10k_lmdb"
'''Decode image'''
# key_name = "test/GOT-10k_Test_000001/00000001.jpg"
# img = decode_img(lmdb_fname, key_name)
# cv2.imwrite("001.jpg", img)
'''Decode str'''
# key_name = "test/list.txt"
# key_name = "train/GOT-10k_Train_000001/groundtruth.txt"
key_name = "train/GOT-10k_Train_000001/absence.label"
str_ = decode_str(lmdb_fname, key_name)
print(str_)

29
lib/utils/merge.py Normal file
View File

@@ -0,0 +1,29 @@
import torch
def merge_template_search(inp_list, return_search=False, return_template=False):
"""NOTICE: search region related features must be in the last place"""
seq_dict = {"feat": torch.cat([x["feat"] for x in inp_list], dim=0),
"mask": torch.cat([x["mask"] for x in inp_list], dim=1),
"pos": torch.cat([x["pos"] for x in inp_list], dim=0)}
if return_search:
x = inp_list[-1]
seq_dict.update({"feat_x": x["feat"], "mask_x": x["mask"], "pos_x": x["pos"]})
if return_template:
z = inp_list[0]
seq_dict.update({"feat_z": z["feat"], "mask_z": z["mask"], "pos_z": z["pos"]})
return seq_dict
def get_qkv(inp_list):
"""The 1st element of the inp_list is about the template,
the 2nd (the last) element is about the search region"""
dict_x = inp_list[-1]
dict_c = {"feat": torch.cat([x["feat"] for x in inp_list], dim=0),
"mask": torch.cat([x["mask"] for x in inp_list], dim=1),
"pos": torch.cat([x["pos"] for x in inp_list], dim=0)} # concatenated dict
q = dict_x["feat"] + dict_x["pos"]
k = dict_c["feat"] + dict_c["pos"]
v = dict_c["feat"]
key_padding_mask = dict_c["mask"]
return q, k, v, key_padding_mask

468
lib/utils/misc.py Normal file
View File

@@ -0,0 +1,468 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import os
import subprocess
import time
from collections import defaultdict, deque
import datetime
import pickle
from typing import Optional, List
import torch
import torch.distributed as dist
from torch import Tensor
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
vers = torchvision.__version__.split('.')
if int(vers[0]) <= 0 and int(vers[1]) < 7:
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
sha = 'N/A'
diff = "clean"
branch = 'N/A'
try:
sha = _run(['git', 'rev-parse', 'HEAD'])
subprocess.check_output(['git', 'diff'], cwd=cwd)
diff = _run(['git', 'diff-index', 'HEAD'])
diff = "has uncommited changes" if diff else "clean"
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def collate_fn(batch):
batch = list(zip(*batch))
batch[0] = nested_tensor_from_tensor_list(batch[0])
return tuple(batch)
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0] # get the first one
for sublist in the_list[1:]: # [h,w,3]
for index, item in enumerate(sublist): # index: 0,1,2
maxes[index] = max(maxes[index], item) # compare current max with the other elements in the whole
return maxes
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # [[3,h1,w1], [3,h2,w2], [3,h3,w3], ...]
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size # ()
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # copy valid regions of the images to the largest padded base.
m[: img.shape[1], :img.shape[2]] = False
else:
raise ValueError('not supported')
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
if target.numel() == 0:
return [torch.zeros([], device=output.device)]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if float(torchvision.__version__[:3]) < 0.7:
if input.numel() > 0:
return torch.nn.functional.interpolate(
input, size, scale_factor, mode, align_corners
)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)

244
lib/utils/tensor.py Normal file
View File

@@ -0,0 +1,244 @@
import functools
import torch
import copy
from collections import OrderedDict
class TensorDict(OrderedDict):
"""Container mainly used for dicts of torch tensors. Extends OrderedDict with pytorch functionality."""
def concat(self, other):
"""Concatenates two dicts without copying internal data."""
return TensorDict(self, **other)
def copy(self):
return TensorDict(super(TensorDict, self).copy())
def __deepcopy__(self, memodict={}):
return TensorDict(copy.deepcopy(list(self), memodict))
def __getattr__(self, name):
if not hasattr(torch.Tensor, name):
raise AttributeError('\'TensorDict\' object has not attribute \'{}\''.format(name))
def apply_attr(*args, **kwargs):
return TensorDict({n: getattr(e, name)(*args, **kwargs) if hasattr(e, name) else e for n, e in self.items()})
return apply_attr
def attribute(self, attr: str, *args):
return TensorDict({n: getattr(e, attr, *args) for n, e in self.items()})
def apply(self, fn, *args, **kwargs):
return TensorDict({n: fn(e, *args, **kwargs) for n, e in self.items()})
@staticmethod
def _iterable(a):
return isinstance(a, (TensorDict, list))
class TensorList(list):
"""Container mainly used for lists of torch tensors. Extends lists with pytorch functionality."""
def __init__(self, list_of_tensors = None):
if list_of_tensors is None:
list_of_tensors = list()
super(TensorList, self).__init__(list_of_tensors)
def __deepcopy__(self, memodict={}):
return TensorList(copy.deepcopy(list(self), memodict))
def __getitem__(self, item):
if isinstance(item, int):
return super(TensorList, self).__getitem__(item)
elif isinstance(item, (tuple, list)):
return TensorList([super(TensorList, self).__getitem__(i) for i in item])
else:
return TensorList(super(TensorList, self).__getitem__(item))
def __add__(self, other):
if TensorList._iterable(other):
return TensorList([e1 + e2 for e1, e2 in zip(self, other)])
return TensorList([e + other for e in self])
def __radd__(self, other):
if TensorList._iterable(other):
return TensorList([e2 + e1 for e1, e2 in zip(self, other)])
return TensorList([other + e for e in self])
def __iadd__(self, other):
if TensorList._iterable(other):
for i, e2 in enumerate(other):
self[i] += e2
else:
for i in range(len(self)):
self[i] += other
return self
def __sub__(self, other):
if TensorList._iterable(other):
return TensorList([e1 - e2 for e1, e2 in zip(self, other)])
return TensorList([e - other for e in self])
def __rsub__(self, other):
if TensorList._iterable(other):
return TensorList([e2 - e1 for e1, e2 in zip(self, other)])
return TensorList([other - e for e in self])
def __isub__(self, other):
if TensorList._iterable(other):
for i, e2 in enumerate(other):
self[i] -= e2
else:
for i in range(len(self)):
self[i] -= other
return self
def __mul__(self, other):
if TensorList._iterable(other):
return TensorList([e1 * e2 for e1, e2 in zip(self, other)])
return TensorList([e * other for e in self])
def __rmul__(self, other):
if TensorList._iterable(other):
return TensorList([e2 * e1 for e1, e2 in zip(self, other)])
return TensorList([other * e for e in self])
def __imul__(self, other):
if TensorList._iterable(other):
for i, e2 in enumerate(other):
self[i] *= e2
else:
for i in range(len(self)):
self[i] *= other
return self
def __truediv__(self, other):
if TensorList._iterable(other):
return TensorList([e1 / e2 for e1, e2 in zip(self, other)])
return TensorList([e / other for e in self])
def __rtruediv__(self, other):
if TensorList._iterable(other):
return TensorList([e2 / e1 for e1, e2 in zip(self, other)])
return TensorList([other / e for e in self])
def __itruediv__(self, other):
if TensorList._iterable(other):
for i, e2 in enumerate(other):
self[i] /= e2
else:
for i in range(len(self)):
self[i] /= other
return self
def __matmul__(self, other):
if TensorList._iterable(other):
return TensorList([e1 @ e2 for e1, e2 in zip(self, other)])
return TensorList([e @ other for e in self])
def __rmatmul__(self, other):
if TensorList._iterable(other):
return TensorList([e2 @ e1 for e1, e2 in zip(self, other)])
return TensorList([other @ e for e in self])
def __imatmul__(self, other):
if TensorList._iterable(other):
for i, e2 in enumerate(other):
self[i] @= e2
else:
for i in range(len(self)):
self[i] @= other
return self
def __mod__(self, other):
if TensorList._iterable(other):
return TensorList([e1 % e2 for e1, e2 in zip(self, other)])
return TensorList([e % other for e in self])
def __rmod__(self, other):
if TensorList._iterable(other):
return TensorList([e2 % e1 for e1, e2 in zip(self, other)])
return TensorList([other % e for e in self])
def __pos__(self):
return TensorList([+e for e in self])
def __neg__(self):
return TensorList([-e for e in self])
def __le__(self, other):
if TensorList._iterable(other):
return TensorList([e1 <= e2 for e1, e2 in zip(self, other)])
return TensorList([e <= other for e in self])
def __ge__(self, other):
if TensorList._iterable(other):
return TensorList([e1 >= e2 for e1, e2 in zip(self, other)])
return TensorList([e >= other for e in self])
def concat(self, other):
return TensorList(super(TensorList, self).__add__(other))
def copy(self):
return TensorList(super(TensorList, self).copy())
def unroll(self):
if not any(isinstance(t, TensorList) for t in self):
return self
new_list = TensorList()
for t in self:
if isinstance(t, TensorList):
new_list.extend(t.unroll())
else:
new_list.append(t)
return new_list
def list(self):
return list(self)
def attribute(self, attr: str, *args):
return TensorList([getattr(e, attr, *args) for e in self])
def apply(self, fn):
return TensorList([fn(e) for e in self])
def __getattr__(self, name):
if not hasattr(torch.Tensor, name):
raise AttributeError('\'TensorList\' object has not attribute \'{}\''.format(name))
def apply_attr(*args, **kwargs):
return TensorList([getattr(e, name)(*args, **kwargs) for e in self])
return apply_attr
@staticmethod
def _iterable(a):
return isinstance(a, (TensorList, list))
def tensor_operation(op):
def islist(a):
return isinstance(a, TensorList)
@functools.wraps(op)
def oplist(*args, **kwargs):
if len(args) == 0:
raise ValueError('Must be at least one argument without keyword (i.e. operand).')
if len(args) == 1:
if islist(args[0]):
return TensorList([op(a, **kwargs) for a in args[0]])
else:
# Multiple operands, assume max two
if islist(args[0]) and islist(args[1]):
return TensorList([op(a, b, *args[2:], **kwargs) for a, b in zip(*args[:2])])
if islist(args[0]):
return TensorList([op(a, *args[1:], **kwargs) for a in args[0]])
if islist(args[1]):
return TensorList([op(args[0], b, *args[2:], **kwargs) for b in args[1]])
# None of the operands are lists
return op(*args, **kwargs)
return oplist

View File

@@ -0,0 +1,50 @@
import torch
from bytecode import Bytecode, Instr
class get_local(object):
cache = {}
is_activate = False
def __init__(self, varname):
self.varname = varname
def __call__(self, func):
if not type(self).is_activate:
return func
type(self).cache[func.__qualname__] = []
c = Bytecode.from_code(func.__code__)
extra_code = [
Instr('STORE_FAST', '_res'),
Instr('LOAD_FAST', self.varname),
Instr('STORE_FAST', '_value'),
Instr('LOAD_FAST', '_res'),
Instr('LOAD_FAST', '_value'),
Instr('BUILD_TUPLE', 2),
Instr('STORE_FAST', '_result_tuple'),
Instr('LOAD_FAST', '_result_tuple'),
]
c[-1:-1] = extra_code
func.__code__ = c.to_code()
def wrapper(*args, **kwargs):
res, values = func(*args, **kwargs)
if isinstance(values, torch.Tensor):
type(self).cache[func.__qualname__].append(values.detach().cpu().numpy())
elif isinstance(values, list): # list of Tensor
type(self).cache[func.__qualname__].append([value.detach().cpu().numpy() for value in values])
else:
raise NotImplementedError
return res
return wrapper
@classmethod
def clear(cls):
for key in cls.cache.keys():
cls.cache[key] = []
@classmethod
def activate(cls):
cls.is_activate = True