init commit of samurai

This commit is contained in:
Cheng-Yen Yang
2024-11-19 22:12:54 -08:00
parent f65f4ba181
commit c17e4cecc0
679 changed files with 123982 additions and 0 deletions

186
lib/train/dataset/got10k.py Normal file
View File

@@ -0,0 +1,186 @@
import os
import os.path
import numpy as np
import torch
import csv
import pandas
import random
from collections import OrderedDict
from .base_video_dataset import BaseVideoDataset
from lib.train.data import jpeg4py_loader
from lib.train.admin import env_settings
class Got10k(BaseVideoDataset):
""" GOT-10k dataset.
Publication:
GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild
Lianghua Huang, Xin Zhao, and Kaiqi Huang
arXiv:1810.11981, 2018
https://arxiv.org/pdf/1810.11981.pdf
Download dataset from http://got-10k.aitestunion.com/downloads
"""
def __init__(self, root=None, image_loader=jpeg4py_loader, split=None, seq_ids=None, data_fraction=None):
"""
args:
root - path to the got-10k training data. Note: This should point to the 'train' folder inside GOT-10k
image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
is used by default.
split - 'train' or 'val'. Note: The validation split here is a subset of the official got-10k train split,
not NOT the official got-10k validation split. To use the official validation split, provide that as
the root folder instead.
seq_ids - List containing the ids of the videos to be used for training. Note: Only one of 'split' or 'seq_ids'
options can be used at the same time.
data_fraction - Fraction of dataset to be used. The complete dataset is used by default
"""
root = env_settings().got10k_dir if root is None else root
super().__init__('GOT10k', root, image_loader)
# all folders inside the root
self.sequence_list = self._get_sequence_list()
# seq_id is the index of the folder inside the got10k root path
if split is not None:
if seq_ids is not None:
raise ValueError('Cannot set both split_name and seq_ids.')
ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
if split == 'train':
file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_split.txt')
elif split == 'val':
file_path = os.path.join(ltr_path, 'data_specs', 'got10k_val_split.txt')
elif split == 'train_full':
file_path = os.path.join(ltr_path, 'data_specs', 'got10k_train_full_split.txt')
elif split == 'vottrain':
file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_train_split.txt')
elif split == 'votval':
file_path = os.path.join(ltr_path, 'data_specs', 'got10k_vot_val_split.txt')
else:
raise ValueError('Unknown split name.')
# seq_ids = pandas.read_csv(file_path, header=None, squeeze=True, dtype=np.int64).values.tolist()
seq_ids = pandas.read_csv(file_path, header=None, dtype=np.int64).squeeze("columns").values.tolist()
elif seq_ids is None:
seq_ids = list(range(0, len(self.sequence_list)))
self.sequence_list = [self.sequence_list[i] for i in seq_ids]
if data_fraction is not None:
self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction))
self.sequence_meta_info = self._load_meta_info()
self.seq_per_class = self._build_seq_per_class()
self.class_list = list(self.seq_per_class.keys())
self.class_list.sort()
def get_name(self):
return 'got10k'
def has_class_info(self):
return True
def has_occlusion_info(self):
return True
def _load_meta_info(self):
sequence_meta_info = {s: self._read_meta(os.path.join(self.root, s)) for s in self.sequence_list}
return sequence_meta_info
def _read_meta(self, seq_path):
try:
with open(os.path.join(seq_path, 'meta_info.ini')) as f:
meta_info = f.readlines()
object_meta = OrderedDict({'object_class_name': meta_info[5].split(': ')[-1][:-1],
'motion_class': meta_info[6].split(': ')[-1][:-1],
'major_class': meta_info[7].split(': ')[-1][:-1],
'root_class': meta_info[8].split(': ')[-1][:-1],
'motion_adverb': meta_info[9].split(': ')[-1][:-1]})
except:
object_meta = OrderedDict({'object_class_name': None,
'motion_class': None,
'major_class': None,
'root_class': None,
'motion_adverb': None})
return object_meta
def _build_seq_per_class(self):
seq_per_class = {}
for i, s in enumerate(self.sequence_list):
object_class = self.sequence_meta_info[s]['object_class_name']
if object_class in seq_per_class:
seq_per_class[object_class].append(i)
else:
seq_per_class[object_class] = [i]
return seq_per_class
def get_sequences_in_class(self, class_name):
return self.seq_per_class[class_name]
def _get_sequence_list(self):
with open(os.path.join(self.root, 'list.txt')) as f:
dir_list = list(csv.reader(f))
dir_list = [dir_name[0] for dir_name in dir_list]
return dir_list
def _read_bb_anno(self, seq_path):
bb_anno_file = os.path.join(seq_path, "groundtruth.txt")
gt = pandas.read_csv(bb_anno_file, delimiter=',', header=None, dtype=np.float32, na_filter=False, low_memory=False).values
return torch.tensor(gt)
def _read_target_visible(self, seq_path):
# Read full occlusion and out_of_view
occlusion_file = os.path.join(seq_path, "absence.label")
cover_file = os.path.join(seq_path, "cover.label")
with open(occlusion_file, 'r', newline='') as f:
occlusion = torch.ByteTensor([int(v[0]) for v in csv.reader(f)])
with open(cover_file, 'r', newline='') as f:
cover = torch.ByteTensor([int(v[0]) for v in csv.reader(f)])
target_visible = ~occlusion & (cover>0).byte()
visible_ratio = cover.float() / 8
return target_visible, visible_ratio
def _get_sequence_path(self, seq_id):
return os.path.join(self.root, self.sequence_list[seq_id])
def get_sequence_info(self, seq_id):
seq_path = self._get_sequence_path(seq_id)
bbox = self._read_bb_anno(seq_path)
valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0)
visible, visible_ratio = self._read_target_visible(seq_path)
visible = visible & valid.byte()
return {'bbox': bbox, 'valid': valid, 'visible': visible, 'visible_ratio': visible_ratio}
def _get_frame_path(self, seq_path, frame_id):
return os.path.join(seq_path, '{:08}.jpg'.format(frame_id+1)) # frames start from 1
def _get_frame(self, seq_path, frame_id):
return self.image_loader(self._get_frame_path(seq_path, frame_id))
def get_class_name(self, seq_id):
obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]
return obj_meta['object_class_name']
def get_frames(self, seq_id, frame_ids, anno=None):
seq_path = self._get_sequence_path(seq_id)
obj_meta = self.sequence_meta_info[self.sequence_list[seq_id]]
frame_list = [self._get_frame(seq_path, f_id) for f_id in frame_ids]
if anno is None:
anno = self.get_sequence_info(seq_id)
anno_frames = {}
for key, value in anno.items():
anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids]
return frame_list, anno_frames, obj_meta