First draft
This commit is contained in:
@@ -11,6 +11,8 @@ from hydra import compose
|
||||
from hydra.utils import instantiate
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
|
||||
def build_sam2(
|
||||
config_file,
|
||||
@@ -76,6 +78,18 @@ def build_sam2_video_predictor(
|
||||
return model
|
||||
|
||||
|
||||
def build_sam2_hf(model_id, **kwargs):
|
||||
config_file = hf_hub_download(repo_id=model_id, filename=f"{model_id}.yaml")
|
||||
ckpt_path = hf_hub_download(repo_id=model_id, filename=f"{model_id}.pt")
|
||||
return build_sam2_video_predictor(config_file=config_file, ckpt_path=ckpt_path, **kwargs)
|
||||
|
||||
|
||||
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
||||
config_file = hf_hub_download(repo_id=model_id, filename=f"{model_id}.yaml")
|
||||
ckpt_path = hf_hub_download(repo_id=model_id, filename=f"{model_id}.pt")
|
||||
return build_sam2_video_predictor(config_file=config_file, ckpt_path=ckpt_path, **kwargs)
|
||||
|
||||
|
||||
def _load_checkpoint(model, ckpt_path):
|
||||
if ckpt_path is not None:
|
||||
sd = torch.load(ckpt_path, map_location="cpu")["model"]
|
||||
@@ -86,4 +100,4 @@ def _load_checkpoint(model, ckpt_path):
|
||||
if unexpected_keys:
|
||||
logging.error(unexpected_keys)
|
||||
raise RuntimeError()
|
||||
logging.info("Loaded checkpoint sucessfully")
|
||||
logging.info("Loaded checkpoint sucessfully")
|
@@ -13,7 +13,7 @@ import torch
|
||||
from PIL.Image import Image
|
||||
|
||||
from sam2.modeling.sam2_base import SAM2Base
|
||||
|
||||
from sam2.build_sam import build_sam2_hf
|
||||
from sam2.utils.transforms import SAM2Transforms
|
||||
|
||||
|
||||
@@ -62,6 +62,20 @@ class SAM2ImagePredictor:
|
||||
(64, 64),
|
||||
]
|
||||
|
||||
def from_pretrained(model_id: str, **kwargs) -> "SAM2ImagePredictor":
|
||||
"""
|
||||
Load a pretrained model from the Hugging Face model hub.
|
||||
|
||||
Arguments:
|
||||
model_id (str): The Hugging Face repository ID.
|
||||
**kwargs: Additional arguments to pass to the model constructor.
|
||||
|
||||
Returns:
|
||||
(SAM2ImagePredictor): The loaded model.
|
||||
"""
|
||||
sam_model = build_sam2_hf(model_id, **kwargs)
|
||||
return SAM2ImagePredictor(sam_model)
|
||||
|
||||
@torch.no_grad()
|
||||
def set_image(
|
||||
self,
|
||||
|
Reference in New Issue
Block a user