diff --git a/README.md b/README.md index 9a7d8a4..da18ea0 100644 --- a/README.md +++ b/README.md @@ -199,6 +199,12 @@ After running our demo code, you can get the tracking results as follows: [![Video Name](./assets/tracking_car_mask_1.jpg)](https://github.com/user-attachments/assets/d3f91ad0-3d32-43c4-a0dc-0bed661415f4) +If you want to try `Grounding DINO 1.5` model, you can run the following scripts after setting your API token: + +```bash +python grounded_sam2_tracking_demo_with_continuous_id_gd1.5.py +``` + ### Citation If you find this project helpful for your research, please consider citing the following BibTeX entry. diff --git a/grounded_sam2_tracking_demo_with_continuous_id_gd1.5.py b/grounded_sam2_tracking_demo_with_continuous_id_gd1.5.py new file mode 100644 index 0000000..5e39a1a --- /dev/null +++ b/grounded_sam2_tracking_demo_with_continuous_id_gd1.5.py @@ -0,0 +1,216 @@ +# dds cloudapi for Grounding DINO 1.5 +from dds_cloudapi_sdk import Config +from dds_cloudapi_sdk import Client +from dds_cloudapi_sdk import DetectionTask +from dds_cloudapi_sdk import TextPrompt +from dds_cloudapi_sdk import DetectionModel +from dds_cloudapi_sdk import DetectionTarget + + +import os +import torch +import numpy as np +from PIL import Image +from sam2.build_sam import build_sam2_video_predictor, build_sam2 +from sam2.sam2_image_predictor import SAM2ImagePredictor +from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection +from utils.video_utils import create_video_from_images +from utils.common_utils import CommonUtils +from utils.mask_dictionary_model import MaskDictionatyModel, ObjectInfo +import json +import copy + +""" +Step 1: Environment settings and model initialization +""" +# use bfloat16 for the entire notebook +torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() + +if torch.cuda.get_device_properties(0).major >= 8: + # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.allow_tf32 = True + +# init sam image predictor and video predictor model +sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt" +model_cfg = "sam2_hiera_l.yaml" +device = "cuda" if torch.cuda.is_available() else "cpu" +print("device", device) + +video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) +sam2_image_model = build_sam2(model_cfg, sam2_checkpoint, device=device) +image_predictor = SAM2ImagePredictor(sam2_image_model) + + +# init grounding dino model from huggingface +model_id = "IDEA-Research/grounding-dino-tiny" +processor = AutoProcessor.from_pretrained(model_id) +grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device) + + +# setup the input image and text prompt for SAM 2 and Grounding DINO +# VERY important: text queries need to be lowercased + end with a dot +text = "car." + +# `video_dir` a directory of JPEG frames with filenames like `.jpg` +video_dir = "notebooks/videos/car" +# 'output_dir' is the directory to save the annotated frames +output_dir = "./outputs" +# 'output_video_path' is the path to save the final video +output_video_path = "./outputs/output.mp4" +# create the output directory +CommonUtils.creat_dirs(output_dir) +mask_data_dir = os.path.join(output_dir, "mask_data") +json_data_dir = os.path.join(output_dir, "json_data") +result_dir = os.path.join(output_dir, "result") +CommonUtils.creat_dirs(mask_data_dir) +CommonUtils.creat_dirs(json_data_dir) +# scan all the JPEG frame names in this directory +frame_names = [ + p for p in os.listdir(video_dir) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] +] +frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + +# init video predictor state +inference_state = video_predictor.init_state(video_path=video_dir) +step = 10 # the step to sample frames for Grounding DINO predictor + +sam2_masks = MaskDictionatyModel() +PROMPT_TYPE_FOR_VIDEO = "mask" # box, mask or point +objects_count = 0 + +""" +Step 2: Prompt Grounding DINO and SAM image predictor to get the box and mask for all frames +""" +print("Total frames:", len(frame_names)) +for start_frame_idx in range(0, len(frame_names), step): +# prompt grounding dino to get the box coordinates on specific frame + print("start_frame_idx", start_frame_idx) + # continue + img_path = os.path.join(video_dir, frame_names[start_frame_idx]) + image = Image.open(img_path) + image_base_name = frame_names[start_frame_idx].split(".")[0] + mask_dict = MaskDictionatyModel(promote_type = PROMPT_TYPE_FOR_VIDEO, mask_name = f"mask_{image_base_name}.npy") + + # run Grounding DINO 1.5 on the image + + API_TOKEN_FOR_GD1_5 = "Your API token" + + config = Config(API_TOKEN_FOR_GD1_5) + # Step 2: initialize the client + client = Client(config) + + image_url = client.upload_file(img_path) + task = DetectionTask( + image_url=image_url, + prompts=[TextPrompt(text=text)], + targets=[DetectionTarget.BBox], # detect bbox + model=DetectionModel.GDino1_6_Pro, # detect with GroundingDino-1.5-Pro model + ) + client.run_task(task) + result = task.result + + objects = result.objects # the list of detected objects + input_boxes = [] + confidences = [] + class_names = [] + + for idx, obj in enumerate(objects): + input_boxes.append(obj.bbox) + confidences.append(obj.score) + class_names.append(obj.category) + + input_boxes = np.array(input_boxes) + OBJECTS = class_names + + # prompt SAM image predictor to get the mask for the object + image_predictor.set_image(np.array(image.convert("RGB"))) + + # prompt SAM 2 image predictor to get the mask for the object + masks, scores, logits = image_predictor.predict( + point_coords=None, + point_labels=None, + box=input_boxes, + multimask_output=False, + ) + # convert the mask shape to (n, H, W) + if masks.ndim == 2: + masks = masks[None] + scores = scores[None] + logits = logits[None] + elif masks.ndim == 4: + masks = masks.squeeze(1) + + """ + Step 3: Register each object's positive points to video predictor + """ + + # If you are using point prompts, we uniformly sample positive points based on the mask + if mask_dict.promote_type == "mask": + mask_dict.add_new_frame_annotation(mask_list=torch.tensor(masks).to(device), box_list=torch.tensor(input_boxes), label_list=OBJECTS) + else: + raise NotImplementedError("SAM 2 video predictor only support mask prompts") + + + """ + Step 4: Propagate the video predictor to get the segmentation results for each frame + """ + objects_count = mask_dict.update_masks(tracking_annotation_dict=sam2_masks, iou_threshold=0.8, objects_count=objects_count) + print("objects_count", objects_count) + video_predictor.reset_state(inference_state) + if len(mask_dict.labels) == 0: + print("No object detected in the frame, skip the frame {}".format(start_frame_idx)) + continue + video_predictor.reset_state(inference_state) + + for object_id, object_info in mask_dict.labels.items(): + frame_idx, out_obj_ids, out_mask_logits = video_predictor.add_new_mask( + inference_state, + start_frame_idx, + object_id, + object_info.mask, + ) + + video_segments = {} # output the following {step} frames tracking masks + for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state, max_frame_num_to_track=step, start_frame_idx=start_frame_idx): + frame_masks = MaskDictionatyModel() + + for i, out_obj_id in enumerate(out_obj_ids): + out_mask = (out_mask_logits[i] > 0.0) # .cpu().numpy() + object_info = ObjectInfo(instance_id = out_obj_id, mask = out_mask[0], class_name = mask_dict.get_target_class_name(out_obj_id)) + object_info.update_box() + frame_masks.labels[out_obj_id] = object_info + image_base_name = frame_names[out_frame_idx].split(".")[0] + frame_masks.mask_name = f"mask_{image_base_name}.npy" + frame_masks.mask_height = out_mask.shape[-2] + frame_masks.mask_width = out_mask.shape[-1] + + video_segments[out_frame_idx] = frame_masks + sam2_masks = copy.deepcopy(frame_masks) + + print("video_segments:", len(video_segments)) + """ + Step 5: save the tracking masks and json files + """ + for frame_idx, frame_masks_info in video_segments.items(): + mask = frame_masks_info.labels + mask_img = torch.zeros(frame_masks_info.mask_height, frame_masks_info.mask_width) + for obj_id, obj_info in mask.items(): + mask_img[obj_info.mask == True] = obj_id + + mask_img = mask_img.numpy().astype(np.uint16) + np.save(os.path.join(mask_data_dir, frame_masks_info.mask_name), mask_img) + + json_data = frame_masks_info.to_dict() + json_data_path = os.path.join(json_data_dir, frame_masks_info.mask_name.replace(".npy", ".json")) + with open(json_data_path, "w") as f: + json.dump(json_data, f) + + +""" +Step 6: Draw the results and save the video +""" +CommonUtils.draw_masks_and_box_with_supervision(video_dir, mask_data_dir, json_data_dir, result_dir) + +create_video_from_images(result_dir, output_video_path, frame_rate=30) \ No newline at end of file