update DINO-X api to V2

This commit is contained in:
rentainhe
2025-04-21 01:06:01 +08:00
parent d49257700a
commit 9412a16276
4 changed files with 90 additions and 64 deletions

View File

@@ -1,10 +1,7 @@
# dds cloudapi for Grounding DINO 1.5
# dds cloudapi for Grounding DINO 1.5 - update to V2Task API
from dds_cloudapi_sdk import Config
from dds_cloudapi_sdk import Client
from dds_cloudapi_sdk import DetectionTask
from dds_cloudapi_sdk import TextPrompt
from dds_cloudapi_sdk import DetectionModel
from dds_cloudapi_sdk import DetectionTarget
from dds_cloudapi_sdk.tasks.v2_task import V2Task
import os
import cv2
@@ -54,6 +51,11 @@ inference_state = video_predictor.init_state(video_path=video_dir)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# 添加参数设置
TEXT_PROMPT = "children. pillow"
BOX_THRESHOLD = 0.2
IOU_THRESHOLD = 0.8
"""
Step 2: Prompt Grounding DINO 1.5 with Cloud API for box coordinates
@@ -70,23 +72,29 @@ config = Config(token)
# Step 2: initialize the client
client = Client(config)
# Step 3: run the task by DetectionTask class
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
# Step 3: run the task using V2Task class
# if you are processing local image file, upload them to DDS server to get the image url
image_url = client.upload_file(img_path)
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text="children. pillow")],
targets=[DetectionTarget.BBox], # detect bbox
model=DetectionModel.GDino1_5_Pro, # detect with GroundingDino-1.5-Pro model
bbox_threshold=0.2,
task = V2Task(
api_path="/v2/task/grounding_dino/detection",
api_body={
"model": "GroundingDino-1.5-Pro",
"image": image_url,
"prompt": {
"type": "text",
"text": TEXT_PROMPT
},
"targets": ["bbox"],
"bbox_threshold": BOX_THRESHOLD,
"iou_threshold": IOU_THRESHOLD,
}
)
client.run_task(task)
result = task.result
objects = result.objects # the list of detected objects
objects = result["objects"] # the list of detected objects
input_boxes = []
@@ -94,9 +102,9 @@ confidences = []
class_names = []
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
class_names.append(obj.category)
input_boxes.append(obj["bbox"])
confidences.append(obj["score"])
class_names.append(obj["category"])
input_boxes = np.array(input_boxes)