update DINO-X api to V2
This commit is contained in:
@@ -1,11 +1,7 @@
|
||||
# dds cloudapi for Grounding DINO 1.5
|
||||
# dds cloudapi for Grounding DINO 1.5 - update to V2Task API
|
||||
from dds_cloudapi_sdk import Config
|
||||
from dds_cloudapi_sdk import Client
|
||||
from dds_cloudapi_sdk import DetectionTask
|
||||
from dds_cloudapi_sdk import TextPrompt
|
||||
from dds_cloudapi_sdk import DetectionModel
|
||||
from dds_cloudapi_sdk import DetectionTarget
|
||||
|
||||
from dds_cloudapi_sdk.tasks.v2_task import V2Task
|
||||
|
||||
import os
|
||||
import torch
|
||||
@@ -51,6 +47,9 @@ grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).
|
||||
# setup the input image and text prompt for SAM 2 and Grounding DINO
|
||||
# VERY important: text queries need to be lowercased + end with a dot
|
||||
text = "car."
|
||||
BOX_THRESHOLD = 0.2
|
||||
IOU_THRESHOLD = 0.8
|
||||
GROUNDING_MODEL = "GroundingDino-1.6-Pro" # 使用字符串替代枚举值
|
||||
|
||||
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
||||
video_dir = "notebooks/videos/car"
|
||||
@@ -102,24 +101,32 @@ for start_frame_idx in range(0, len(frame_names), step):
|
||||
client = Client(config)
|
||||
|
||||
image_url = client.upload_file(img_path)
|
||||
task = DetectionTask(
|
||||
image_url=image_url,
|
||||
prompts=[TextPrompt(text=text)],
|
||||
targets=[DetectionTarget.BBox], # detect bbox
|
||||
model=DetectionModel.GDino1_6_Pro, # detect with GroundingDino-1.5-Pro model
|
||||
task = V2Task(
|
||||
api_path="/v2/task/grounding_dino/detection",
|
||||
api_body={
|
||||
"model": GROUNDING_MODEL,
|
||||
"image": image_url,
|
||||
"prompt": {
|
||||
"type": "text",
|
||||
"text": text
|
||||
},
|
||||
"targets": ["bbox"],
|
||||
"bbox_threshold": BOX_THRESHOLD,
|
||||
"iou_threshold": IOU_THRESHOLD,
|
||||
}
|
||||
)
|
||||
client.run_task(task)
|
||||
result = task.result
|
||||
|
||||
objects = result.objects # the list of detected objects
|
||||
objects = result["objects"] # the list of detected objects
|
||||
input_boxes = []
|
||||
confidences = []
|
||||
class_names = []
|
||||
|
||||
for idx, obj in enumerate(objects):
|
||||
input_boxes.append(obj.bbox)
|
||||
confidences.append(obj.score)
|
||||
class_names.append(obj.category)
|
||||
input_boxes.append(obj["bbox"])
|
||||
confidences.append(obj["score"])
|
||||
class_names.append(obj["category"])
|
||||
|
||||
input_boxes = np.array(input_boxes)
|
||||
OBJECTS = class_names
|
||||
@@ -154,7 +161,7 @@ for start_frame_idx in range(0, len(frame_names), step):
|
||||
|
||||
|
||||
|
||||
objects_count = mask_dict.update_masks(tracking_annotation_dict=sam2_masks, iou_threshold=0.8, objects_count=objects_count)
|
||||
objects_count = mask_dict.update_masks(tracking_annotation_dict=sam2_masks, iou_threshold=IOU_THRESHOLD, objects_count=objects_count)
|
||||
print("objects_count", objects_count)
|
||||
|
||||
else:
|
||||
|
Reference in New Issue
Block a user