add grounded samurai demo with dino-x
This commit is contained in:
226
grounded_samurai_dinox.py
Normal file
226
grounded_samurai_dinox.py
Normal file
@@ -0,0 +1,226 @@
|
||||
# libraries for SAMURAI
|
||||
import os
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
sys.path.append("./sam2")
|
||||
from sam2.build_sam import build_sam2_video_predictor
|
||||
|
||||
# dds cloudapi for DINO-X
|
||||
from dds_cloudapi_sdk import Config
|
||||
from dds_cloudapi_sdk import Client
|
||||
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
|
||||
from dds_cloudapi_sdk.tasks.types import DetectionTarget
|
||||
from dds_cloudapi_sdk import TextPrompt
|
||||
|
||||
"""
|
||||
Hyperparam for Ground and Tracking
|
||||
"""
|
||||
VIDEO_PATH = "demo.mp4"
|
||||
TEXT_PROMPT = "person."
|
||||
OUTPUT_VIDEO_PATH = "./tracking_demo.mp4"
|
||||
SOURCE_VIDEO_FRAME_DIR = "./custom_video_frames"
|
||||
SAVE_TRACKING_RESULTS_DIR = "./tracking_results"
|
||||
API_TOKEN_FOR_DINOX = "Your API token"
|
||||
PROMPT_TYPE_FOR_VIDEO = "box" # choose from ["point", "box", "mask"]
|
||||
BOX_THRESHOLD = 0.2
|
||||
|
||||
"""
|
||||
Step 1: Environment settings and model initialization for SAM 2
|
||||
"""
|
||||
# use bfloat16 for the entire notebook
|
||||
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
||||
|
||||
if torch.cuda.get_device_properties(0).major >= 8:
|
||||
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# init sam image predictor and video predictor model
|
||||
sam2_checkpoint = "/comp_robot/rentianhe/code/samurai/sam2/checkpoints/sam2.1_hiera_large.pt"
|
||||
model_cfg = "configs/samurai/sam2.1_hiera_l.yaml"
|
||||
|
||||
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
||||
|
||||
# # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
||||
# video_dir = "notebooks/videos/bedroom"
|
||||
|
||||
"""
|
||||
Custom video input directly using video files
|
||||
"""
|
||||
video_info = sv.VideoInfo.from_video_path(VIDEO_PATH) # get video info
|
||||
print(video_info)
|
||||
frame_generator = sv.get_video_frames_generator(VIDEO_PATH, stride=1, start=0, end=None)
|
||||
|
||||
# saving video to frames
|
||||
source_frames = Path(SOURCE_VIDEO_FRAME_DIR)
|
||||
source_frames.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with sv.ImageSink(
|
||||
target_dir_path=source_frames,
|
||||
overwrite=True,
|
||||
image_name_pattern="{:05d}.jpg"
|
||||
) as sink:
|
||||
for frame in tqdm(frame_generator, desc="Saving Video Frames"):
|
||||
sink.save_image(frame)
|
||||
|
||||
# scan all the JPEG frame names in this directory
|
||||
frame_names = [
|
||||
p for p in os.listdir(SOURCE_VIDEO_FRAME_DIR)
|
||||
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
||||
]
|
||||
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
||||
|
||||
# init video predictor state
|
||||
inference_state = video_predictor.init_state(video_path=SOURCE_VIDEO_FRAME_DIR)
|
||||
|
||||
ann_frame_idx = 0 # the frame index we interact with
|
||||
"""
|
||||
Step 2: Prompt DINO-X with Cloud API for box coordinates
|
||||
"""
|
||||
|
||||
# prompt grounding dino to get the box coordinates on specific frame
|
||||
img_path = os.path.join(SOURCE_VIDEO_FRAME_DIR, frame_names[ann_frame_idx])
|
||||
image = Image.open(img_path)
|
||||
|
||||
# Step 1: initialize the config
|
||||
config = Config(API_TOKEN_FOR_DINOX)
|
||||
|
||||
# Step 2: initialize the client
|
||||
client = Client(config)
|
||||
|
||||
# Step 3: run the task by DetectionTask class
|
||||
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
|
||||
# if you are processing local image file, upload them to DDS server to get the image url
|
||||
image_url = client.upload_file(img_path)
|
||||
|
||||
task = DinoxTask(
|
||||
image_url=image_url,
|
||||
prompts=[TextPrompt(text=TEXT_PROMPT)],
|
||||
bbox_threshold=0.25,
|
||||
targets=[DetectionTarget.BBox],
|
||||
)
|
||||
|
||||
client.run_task(task)
|
||||
result = task.result
|
||||
|
||||
objects = result.objects # the list of detected objects
|
||||
|
||||
|
||||
input_boxes = []
|
||||
confidences = []
|
||||
class_names = []
|
||||
|
||||
for idx, obj in enumerate(objects):
|
||||
input_boxes.append(obj.bbox)
|
||||
confidences.append(obj.score)
|
||||
class_names.append(obj.category)
|
||||
|
||||
input_boxes = np.array(input_boxes)
|
||||
|
||||
print(input_boxes)
|
||||
|
||||
# process the detection results
|
||||
OBJECTS = class_names
|
||||
|
||||
print(OBJECTS)
|
||||
|
||||
"""
|
||||
Step 3: Register each object's positive points to video predictor with seperate add_new_points call
|
||||
"""
|
||||
|
||||
assert PROMPT_TYPE_FOR_VIDEO in ["point", "box", "mask"], "SAM 2 video predictor only support point/box/mask prompt"
|
||||
|
||||
# Using box prompt
|
||||
if PROMPT_TYPE_FOR_VIDEO == "box":
|
||||
for object_id, (label, box) in enumerate(zip(OBJECTS, input_boxes), start=1):
|
||||
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points_or_box(
|
||||
inference_state=inference_state,
|
||||
frame_idx=ann_frame_idx,
|
||||
obj_id=object_id,
|
||||
box=box,
|
||||
)
|
||||
break
|
||||
|
||||
"""
|
||||
Step 4: Propagate the video predictor to get the segmentation results for each frame
|
||||
"""
|
||||
video_segments = {} # video_segments contains the per-frame segmentation results
|
||||
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
||||
video_segments[out_frame_idx] = {
|
||||
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
||||
for i, out_obj_id in enumerate(out_obj_ids)
|
||||
}
|
||||
|
||||
"""
|
||||
Step 5: Visualize the segment results across the video and save them
|
||||
"""
|
||||
|
||||
if not os.path.exists(SAVE_TRACKING_RESULTS_DIR):
|
||||
os.makedirs(SAVE_TRACKING_RESULTS_DIR)
|
||||
|
||||
ID_TO_OBJECTS = {i: obj for i, obj in enumerate(OBJECTS, start=1)}
|
||||
|
||||
for frame_idx, segments in video_segments.items():
|
||||
img = cv2.imread(os.path.join(SOURCE_VIDEO_FRAME_DIR, frame_names[frame_idx]))
|
||||
|
||||
object_ids = list(segments.keys())
|
||||
masks = list(segments.values())
|
||||
masks = np.concatenate(masks, axis=0)
|
||||
|
||||
detections = sv.Detections(
|
||||
xyxy=sv.mask_to_xyxy(masks), # (n, 4)
|
||||
mask=masks, # (n, h, w)
|
||||
class_id=np.array(object_ids, dtype=np.int32),
|
||||
)
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
|
||||
label_annotator = sv.LabelAnnotator()
|
||||
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=[ID_TO_OBJECTS[i] for i in object_ids])
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
cv2.imwrite(os.path.join(SAVE_TRACKING_RESULTS_DIR, f"annotated_frame_{frame_idx:05d}.jpg"), annotated_frame)
|
||||
|
||||
|
||||
"""
|
||||
Step 6: Convert the annotated frames to video
|
||||
"""
|
||||
|
||||
def create_video_from_images(image_folder, output_video_path, frame_rate=25):
|
||||
# define valid extension
|
||||
valid_extensions = [".jpg", ".jpeg", ".JPG", ".JPEG", ".png", ".PNG"]
|
||||
|
||||
# get all image files in the folder
|
||||
image_files = [f for f in os.listdir(image_folder)
|
||||
if os.path.splitext(f)[1] in valid_extensions]
|
||||
image_files.sort() # sort the files in alphabetical order
|
||||
print(image_files)
|
||||
if not image_files:
|
||||
raise ValueError("No valid image files found in the specified folder.")
|
||||
|
||||
# load the first image to get the dimensions of the video
|
||||
first_image_path = os.path.join(image_folder, image_files[0])
|
||||
first_image = cv2.imread(first_image_path)
|
||||
height, width, _ = first_image.shape
|
||||
|
||||
# create a video writer
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # codec for saving the video
|
||||
video_writer = cv2.VideoWriter(output_video_path, fourcc, frame_rate, (width, height))
|
||||
|
||||
# write each image to the video
|
||||
for image_file in tqdm(image_files):
|
||||
image_path = os.path.join(image_folder, image_file)
|
||||
image = cv2.imread(image_path)
|
||||
video_writer.write(image)
|
||||
|
||||
# source release
|
||||
video_writer.release()
|
||||
print(f"Video saved at {output_video_path}")
|
||||
|
||||
|
||||
create_video_from_images(SAVE_TRACKING_RESULTS_DIR, OUTPUT_VIDEO_PATH)
|
Reference in New Issue
Block a user