Make huggingface_hub soft dependency
This commit is contained in:
@@ -11,8 +11,6 @@ from hydra import compose
|
||||
from hydra.utils import instantiate
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
|
||||
def build_sam2(
|
||||
config_file,
|
||||
@@ -80,6 +78,8 @@ def build_sam2_video_predictor(
|
||||
|
||||
def build_sam2_hf(model_id, **kwargs):
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
model_id_to_filenames = {
|
||||
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
|
||||
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
|
||||
@@ -87,12 +87,14 @@ def build_sam2_hf(model_id, **kwargs):
|
||||
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
|
||||
}
|
||||
config_name, checkpoint_name = model_id_to_filenames[model_id]
|
||||
# config_file = hf_hub_download(repo_id=model_id, filename=config_name)
|
||||
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
|
||||
return build_sam2_video_predictor(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
|
||||
|
||||
|
||||
def build_sam2_video_predictor_hf(model_id, **kwargs):
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
config_file = hf_hub_download(repo_id=model_id, filename=f"{model_id}.yaml")
|
||||
ckpt_path = hf_hub_download(repo_id=model_id, filename=f"{model_id}.pt")
|
||||
return build_sam2_video_predictor(config_file=config_file, ckpt_path=ckpt_path, **kwargs)
|
||||
|
@@ -13,7 +13,6 @@ import torch
|
||||
from PIL.Image import Image
|
||||
|
||||
from sam2.modeling.sam2_base import SAM2Base
|
||||
from sam2.build_sam import build_sam2_hf
|
||||
from sam2.utils.transforms import SAM2Transforms
|
||||
|
||||
|
||||
@@ -74,6 +73,8 @@ class SAM2ImagePredictor:
|
||||
Returns:
|
||||
(SAM2ImagePredictor): The loaded model.
|
||||
"""
|
||||
from sam2.build_sam import build_sam2_hf
|
||||
|
||||
sam_model = build_sam2_hf(model_id, **kwargs)
|
||||
return cls(sam_model)
|
||||
|
||||
|
@@ -103,6 +103,23 @@ class SAM2VideoPredictor(SAM2Base):
|
||||
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
||||
return inference_state
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
|
||||
"""
|
||||
Load a pretrained model from the Hugging Face model hub.
|
||||
|
||||
Arguments:
|
||||
model_id (str): The Hugging Face repository ID.
|
||||
**kwargs: Additional arguments to pass to the model constructor.
|
||||
|
||||
Returns:
|
||||
(SAM2ImagePredictor): The loaded model.
|
||||
"""
|
||||
from sam2.build_sam import build_sam2_video_predictor_hf
|
||||
|
||||
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
|
||||
return cls(sam_model)
|
||||
|
||||
def _obj_id_to_idx(self, inference_state, obj_id):
|
||||
"""Map client-side object id to model-side object index."""
|
||||
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
||||
|
Reference in New Issue
Block a user