diff --git a/grounded_sam2_dinox_demo.py b/grounded_sam2_dinox_demo.py index e1f748d..9b238c6 100644 --- a/grounded_sam2_dinox_demo.py +++ b/grounded_sam2_dinox_demo.py @@ -1,9 +1,7 @@ # dds cloudapi for Grounding DINO 1.5 from dds_cloudapi_sdk import Config from dds_cloudapi_sdk import Client -from dds_cloudapi_sdk.tasks.dinox import DinoxTask -from dds_cloudapi_sdk.tasks.types import DetectionTarget -from dds_cloudapi_sdk import TextPrompt +from dds_cloudapi_sdk.tasks.v2_task import V2Task import os import cv2 @@ -27,6 +25,7 @@ IMG_PATH = "notebooks/images/cars.jpg" SAM2_CHECKPOINT = "./checkpoints/sam2.1_hiera_large.pt" SAM2_MODEL_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml" BOX_THRESHOLD = 0.2 +IOU_THRESHOLD = 0.8 WITH_SLICE_INFERENCE = False SLICE_WH = (480, 480) OVERLAP_RATIO = (0.2, 0.2) @@ -48,7 +47,7 @@ config = Config(token) client = Client(config) # Step 3: run the task by DetectionTask class -# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg" +# infer_image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg" # if you are processing local image file, upload them to DDS server to get the image url classes = [x.strip().lower() for x in TEXT_PROMPT.split('.') if x] @@ -62,13 +61,18 @@ if WITH_SLICE_INFERENCE: with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile: temp_filename = tmpfile.name cv2.imwrite(temp_filename, image_slice) - image_url = client.upload_file(temp_filename) - task = DinoxTask( - image_url=image_url, - prompts=[TextPrompt(text=TEXT_PROMPT)], - bbox_threshold=0.25, - targets=[DetectionTarget.BBox], - ) + infer_image_url = client.upload_file(temp_filename) + task = V2Task(api_path="/v2/task/dinox/detection", api_body={ + "model": "DINO-X-1.0", + "image": infer_image_url, + "prompt": { + "type":"text", + "text":TEXT_PROMPT + }, + "targets": ["bbox", "mask"], + "bbox_threshold": BOX_THRESHOLD, + "iou_threshold": IOU_THRESHOLD, + }) client.run_task(task) result = task.result # detele the tempfile @@ -77,7 +81,7 @@ if WITH_SLICE_INFERENCE: input_boxes = [] confidences = [] class_ids = [] - objects = result.objects + objects = result["objects"] for idx, obj in enumerate(objects): input_boxes.append(obj.bbox) confidences.append(obj.score) @@ -102,19 +106,26 @@ if WITH_SLICE_INFERENCE: class_ids = detections.class_id input_boxes = detections.xyxy else: - image_url = client.upload_file(IMG_PATH) + infer_image_url = client.upload_file(IMG_PATH) - task = DinoxTask( - image_url=image_url, - prompts=[TextPrompt(text=TEXT_PROMPT)], - bbox_threshold=0.25, - targets=[DetectionTarget.BBox], + task = V2Task( + api_path="/v2/task/dinox/detection", + api_body={ + "model": "DINO-X-1.0", + "image": infer_image_url, + "prompt": { + "type":"text", + "text":TEXT_PROMPT + }, + "targets": ["bbox", "mask"], + "bbox_threshold": BOX_THRESHOLD, + "iou_threshold": IOU_THRESHOLD, + } ) client.run_task(task) result = task.result - - objects = result.objects # the list of detected objects + objects = result["objects"] # the list of detected objects input_boxes = [] @@ -123,9 +134,9 @@ else: class_ids = [] for idx, obj in enumerate(objects): - input_boxes.append(obj.bbox) - confidences.append(obj.score) - cls_name = obj.category.lower().strip() + input_boxes.append(obj["bbox"]) + confidences.append(obj["score"]) + cls_name = obj["category"].lower().strip() class_names.append(cls_name) class_ids.append(class_name_to_id[cls_name])