SAM 2 Update 12/11/2024 -- full model compilation for a major VOS speedup and a new SAM2VideoPredictor to better handle multi-object tracking (#486)
This PR provides new features and updates for SAM 2: - We now support `torch.compile` of the entire SAM 2 model on videos, which can be turned on by setting `vos_optimized=True` in `build_sam2_video_predictor` (it uses the new `SAM2VideoPredictorVOS` predictor class in `sam2/sam2_video_predictor.py`). * Compared to the previous setting (which only compiles the image encoder backbone), the new full model compilation gives a major speedup in inference FPS. * In the VOS prediction script `tools/vos_inference.py`, you can specify this option in `tools/vos_inference.py` via the `--use_vos_optimized_video_predictor` flag. * Note that turning on this flag might introduce a small variance in the predictions due to numerical differences caused by `torch.compile` of the full model. * **PyTorch 2.5.1 is the minimum version for full support of this feature**. (Earlier PyTorch versions might run into compilation errors in some cases.) Therefore, we have updated the minimum PyTorch version to 2.5.1 accordingly in the installation scripts. - We also update the implementation of the `SAM2VideoPredictor` class for the SAM 2 video prediction in `sam2/sam2_video_predictor.py`, which allows for independent per-object inference. Specifically, in the new `SAM2VideoPredictor`: * Now **we handle the inference of each object independently** (as if we are opening a separate session for each object) while sharing their backbone features. * This change allows us to relax the assumption of prompting for multi-object tracking. Previously (due to the batching behavior in inference), if a video frame receives clicks for only a subset of objects, the rest of the (non-prompted) objects are assumed to be non-existent in this frame (i.e., in such frames, the user is telling SAM 2 that the rest of the objects don't appear). Now, if a frame receives clicks for only a subset of objects, we do not make any assumptions about the remaining (non-prompted) objects (i.e., now each object is handled independently and is not affected by how other objects are prompted). As a result, **we allow adding new objects after tracking starts** after this change (which was previously a restriction on usage). * We believe that the new version is a more natural inference behavior and therefore switched to it as the default behavior. The previous implementation of `SAM2VideoPredictor` is backed up to in `sam2/sam2_video_predictor_legacy.py`. All the VOS inference results using `tools/vos_inference.py` should remain the same after this change to the `SAM2VideoPredictor` class.
This commit is contained in:
@@ -36,7 +36,7 @@ model:
|
||||
self_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
feat_sizes: [64, 64]
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
downsample_rate: 1
|
||||
@@ -47,7 +47,7 @@ model:
|
||||
cross_attention:
|
||||
_target_: sam2.modeling.sam.transformer.RoPEAttention
|
||||
rope_theta: 10000.0
|
||||
feat_sizes: [32, 32]
|
||||
feat_sizes: [64, 64]
|
||||
rope_k_repeat: True
|
||||
embedding_dim: 256
|
||||
num_heads: 1
|
||||
|
Reference in New Issue
Block a user