feat : Update code, new args
This commit is contained in:
@@ -16,7 +16,7 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torch.utils.checkpoint as checkpoint
|
import torch.utils.checkpoint as checkpoint
|
||||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
from timm.layers import DropPath, to_2tuple, trunc_normal_
|
||||||
|
|
||||||
from grounding_dino.groundingdino.util.misc import NestedTensor
|
from grounding_dino.groundingdino.util.misc import NestedTensor
|
||||||
|
|
||||||
@@ -113,7 +113,7 @@ class WindowAttention(nn.Module):
|
|||||||
# get pair-wise relative position index for each token inside the window
|
# get pair-wise relative position index for each token inside the window
|
||||||
coords_h = torch.arange(self.window_size[0])
|
coords_h = torch.arange(self.window_size[0])
|
||||||
coords_w = torch.arange(self.window_size[1])
|
coords_w = torch.arange(self.window_size[1])
|
||||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
|
||||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||||
|
@@ -8,7 +8,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from timm.models.layers import DropPath
|
from timm.layers import DropPath
|
||||||
|
|
||||||
|
|
||||||
class FeatureResizer(nn.Module):
|
class FeatureResizer(nn.Module):
|
||||||
|
@@ -470,6 +470,7 @@ class TransformerEncoder(nn.Module):
|
|||||||
ref_y, ref_x = torch.meshgrid(
|
ref_y, ref_x = torch.meshgrid(
|
||||||
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
||||||
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
|
||||||
|
indexing="ij"
|
||||||
)
|
)
|
||||||
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
||||||
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
||||||
@@ -859,7 +860,7 @@ class DeformableTransformerDecoderLayer(nn.Module):
|
|||||||
return tensor if pos is None else tensor + pos
|
return tensor if pos is None else tensor + pos
|
||||||
|
|
||||||
def forward_ffn(self, tgt):
|
def forward_ffn(self, tgt):
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
with torch.amp.autocast("cuda", enabled=False):
|
||||||
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
|
||||||
tgt = tgt + self.dropout4(tgt2)
|
tgt = tgt + self.dropout4(tgt2)
|
||||||
tgt = self.norm3(tgt)
|
tgt = self.norm3(tgt)
|
||||||
|
@@ -79,6 +79,7 @@ def gen_encoder_output_proposals(
|
|||||||
grid_y, grid_x = torch.meshgrid(
|
grid_y, grid_x = torch.meshgrid(
|
||||||
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
|
||||||
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
|
||||||
|
indexing="ij"
|
||||||
)
|
)
|
||||||
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
|
||||||
|
|
||||||
|
@@ -118,7 +118,7 @@ def masks_to_boxes(masks):
|
|||||||
|
|
||||||
y = torch.arange(0, h, dtype=torch.float)
|
y = torch.arange(0, h, dtype=torch.float)
|
||||||
x = torch.arange(0, w, dtype=torch.float)
|
x = torch.arange(0, w, dtype=torch.float)
|
||||||
y, x = torch.meshgrid(y, x)
|
y, x = torch.meshgrid(y, x, indexing="ij")
|
||||||
|
|
||||||
x_mask = masks * x.unsqueeze(0)
|
x_mask = masks * x.unsqueeze(0)
|
||||||
x_max = x_mask.flatten(1).max(-1)[0]
|
x_max = x_mask.flatten(1).max(-1)[0]
|
||||||
|
@@ -63,6 +63,7 @@ def predict(
|
|||||||
|
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
image = image.to(device)
|
image = image.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
outputs = model(image[None], captions=[caption])
|
outputs = model(image[None], captions=[caption])
|
||||||
@@ -76,10 +77,10 @@ def predict(
|
|||||||
|
|
||||||
tokenizer = model.tokenizer
|
tokenizer = model.tokenizer
|
||||||
tokenized = tokenizer(caption)
|
tokenized = tokenizer(caption)
|
||||||
|
|
||||||
if remove_combined:
|
if remove_combined:
|
||||||
sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
|
sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
|
||||||
|
|
||||||
phrases = []
|
phrases = []
|
||||||
for logit in logits:
|
for logit in logits:
|
||||||
max_idx = logit.argmax()
|
max_idx = logit.argmax()
|
||||||
|
@@ -623,7 +623,7 @@ class Trainer:
|
|||||||
|
|
||||||
# compute output
|
# compute output
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
with torch.cuda.amp.autocast(
|
with torch.amp.autocast("cuda",
|
||||||
enabled=(self.optim_conf.amp.enabled if self.optim_conf else False),
|
enabled=(self.optim_conf.amp.enabled if self.optim_conf else False),
|
||||||
dtype=(
|
dtype=(
|
||||||
get_amp_type(self.optim_conf.amp.amp_dtype)
|
get_amp_type(self.optim_conf.amp.amp_dtype)
|
||||||
@@ -858,7 +858,8 @@ class Trainer:
|
|||||||
# grads will also update a model even if the step doesn't produce
|
# grads will also update a model even if the step doesn't produce
|
||||||
# gradients
|
# gradients
|
||||||
self.optim.zero_grad(set_to_none=True)
|
self.optim.zero_grad(set_to_none=True)
|
||||||
with torch.cuda.amp.autocast(
|
with torch.amp.autocast(
|
||||||
|
"cuda",
|
||||||
enabled=self.optim_conf.amp.enabled,
|
enabled=self.optim_conf.amp.enabled,
|
||||||
dtype=get_amp_type(self.optim_conf.amp.amp_dtype),
|
dtype=get_amp_type(self.optim_conf.amp.amp_dtype),
|
||||||
):
|
):
|
||||||
|
Reference in New Issue
Block a user