add tracking demo with gd 1.5
This commit is contained in:
191
grounded_sam2_tracking_demo_with_gd1.5.py
Normal file
191
grounded_sam2_tracking_demo_with_gd1.5.py
Normal file
@@ -0,0 +1,191 @@
|
||||
# dds cloudapi for Grounding DINO 1.5
|
||||
from dds_cloudapi_sdk import Config
|
||||
from dds_cloudapi_sdk import Client
|
||||
from dds_cloudapi_sdk import DetectionTask
|
||||
from dds_cloudapi_sdk import TextPrompt
|
||||
from dds_cloudapi_sdk import DetectionModel
|
||||
from dds_cloudapi_sdk import DetectionTarget
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
from PIL import Image
|
||||
from sam2.build_sam import build_sam2_video_predictor, build_sam2
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
||||
from track_utils import sample_points_from_masks
|
||||
from video_utils import create_video_from_images
|
||||
|
||||
|
||||
"""
|
||||
Step 1: Environment settings and model initialization for SAM 2
|
||||
"""
|
||||
# use bfloat16 for the entire notebook
|
||||
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
||||
|
||||
if torch.cuda.get_device_properties(0).major >= 8:
|
||||
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# init sam image predictor and video predictor model
|
||||
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
||||
model_cfg = "sam2_hiera_l.yaml"
|
||||
|
||||
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
||||
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint)
|
||||
image_predictor = SAM2ImagePredictor(sam2_image_model)
|
||||
|
||||
|
||||
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
||||
video_dir = "notebooks/videos/bedroom"
|
||||
|
||||
# scan all the JPEG frame names in this directory
|
||||
frame_names = [
|
||||
p for p in os.listdir(video_dir)
|
||||
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
||||
]
|
||||
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
||||
|
||||
# init video predictor state
|
||||
inference_state = video_predictor.init_state(video_path=video_dir)
|
||||
|
||||
ann_frame_idx = 0 # the frame index we interact with
|
||||
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
|
||||
|
||||
|
||||
"""
|
||||
Step 2: Prompt Grounding DINO 1.5 with Cloud API for box coordinates
|
||||
"""
|
||||
|
||||
# prompt grounding dino to get the box coordinates on specific frame
|
||||
img_path = os.path.join(video_dir, frame_names[ann_frame_idx])
|
||||
image = Image.open(img_path)
|
||||
|
||||
# Step 1: initialize the config
|
||||
token = "Your API token"
|
||||
config = Config(token)
|
||||
|
||||
# Step 2: initialize the client
|
||||
client = Client(config)
|
||||
|
||||
# Step 3: run the task by DetectionTask class
|
||||
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
|
||||
# if you are processing local image file, upload them to DDS server to get the image url
|
||||
image_url = client.upload_file(img_path)
|
||||
|
||||
task = DetectionTask(
|
||||
image_url=image_url,
|
||||
prompts=[TextPrompt(text="children. pillow")],
|
||||
targets=[DetectionTarget.BBox], # detect bbox
|
||||
model=DetectionModel.GDino1_5_Pro, # detect with GroundingDino-1.5-Pro model
|
||||
)
|
||||
|
||||
client.run_task(task)
|
||||
result = task.result
|
||||
|
||||
objects = result.objects # the list of detected objects
|
||||
|
||||
|
||||
input_boxes = []
|
||||
confidences = []
|
||||
class_names = []
|
||||
|
||||
for idx, obj in enumerate(objects):
|
||||
input_boxes.append(obj.bbox)
|
||||
confidences.append(obj.score)
|
||||
class_names.append(obj.category)
|
||||
|
||||
input_boxes = np.array(input_boxes)
|
||||
|
||||
print(input_boxes)
|
||||
|
||||
# prompt SAM image predictor to get the mask for the object
|
||||
image_predictor.set_image(np.array(image.convert("RGB")))
|
||||
|
||||
# process the detection results
|
||||
OBJECTS = class_names
|
||||
|
||||
print(OBJECTS)
|
||||
|
||||
# prompt SAM 2 image predictor to get the mask for the object
|
||||
masks, scores, logits = image_predictor.predict(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
box=input_boxes,
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
# convert the mask shape to (n, H, W)
|
||||
if masks.ndim == 3:
|
||||
masks = masks[None]
|
||||
scores = scores[None]
|
||||
logits = logits[None]
|
||||
elif masks.ndim == 4:
|
||||
masks = masks.squeeze(1)
|
||||
|
||||
"""
|
||||
Step 3: Register each object's positive points to video predictor with seperate add_new_points call
|
||||
"""
|
||||
|
||||
# sample the positive points from mask for each objects
|
||||
all_sample_points = sample_points_from_masks(masks=masks, num_points=10)
|
||||
|
||||
for object_id, (label, points) in enumerate(zip(OBJECTS, all_sample_points), start=1):
|
||||
labels = np.ones((points.shape[0]), dtype=np.int32)
|
||||
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points(
|
||||
inference_state=inference_state,
|
||||
frame_idx=ann_frame_idx,
|
||||
obj_id=object_id,
|
||||
points=points,
|
||||
labels=labels,
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
Step 4: Propagate the video predictor to get the segmentation results for each frame
|
||||
"""
|
||||
video_segments = {} # video_segments contains the per-frame segmentation results
|
||||
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
||||
video_segments[out_frame_idx] = {
|
||||
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
||||
for i, out_obj_id in enumerate(out_obj_ids)
|
||||
}
|
||||
|
||||
"""
|
||||
Step 5: Visualize the segment results across the video and save them
|
||||
"""
|
||||
|
||||
save_dir = "./tracking_results"
|
||||
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
ID_TO_OBJECTS = {i: obj for i, obj in enumerate(OBJECTS, start=1)}
|
||||
for frame_idx, segments in video_segments.items():
|
||||
img = cv2.imread(os.path.join(video_dir, frame_names[frame_idx]))
|
||||
|
||||
object_ids = list(segments.keys())
|
||||
masks = list(segments.values())
|
||||
masks = np.concatenate(masks, axis=0)
|
||||
|
||||
detections = sv.Detections(
|
||||
xyxy=sv.mask_to_xyxy(masks), # (n, 4)
|
||||
mask=masks, # (n, h, w)
|
||||
class_id=np.array(object_ids, dtype=np.int32),
|
||||
)
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections, labels=[ID_TO_OBJECTS[i] for i in object_ids])
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
cv2.imwrite(os.path.join(save_dir, f"annotated_frame_{frame_idx:05d}.jpg"), annotated_frame)
|
||||
|
||||
|
||||
"""
|
||||
Step 6: Convert the annotated frames to video
|
||||
"""
|
||||
|
||||
output_video_path = "./children_tracking_demo_video.mp4"
|
||||
create_video_from_images(save_dir, output_video_path)
|
Reference in New Issue
Block a user