support more demos with florence-2

This commit is contained in:
rentainhe
2024-08-15 02:13:30 +08:00
parent 35541890cc
commit 1fc4d469ab
2 changed files with 310 additions and 12 deletions

View File

@@ -1,6 +1,7 @@
import os
import cv2
import torch
import argparse
import numpy as np
import supervision as sv
from PIL import Image
@@ -127,7 +128,7 @@ def object_detection_and_segmentation(
}
}
"""
results = results["<OD>"]
results = results[task_prompt]
# parse florence-2 detection results
input_boxes = np.array(results["bboxes"])
class_names = results["labels"]
@@ -163,22 +164,286 @@ def object_detection_and_segmentation(
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_florence2_det_annotated_image.jpg"), annotated_frame)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_det_annotated_image.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_florence2_det_image_with_mask.jpg"), annotated_frame)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_det_image_with_mask.jpg"), annotated_frame)
print(f'Successfully save annotated image to "{output_dir}"')
"""
Pipeline 2: Dense Region Caption + Segmentation
"""
def dense_region_caption_and_segmentation(
florence2_model,
florence2_processor,
sam2_predictor,
image_path,
task_prompt="<DENSE_REGION_CAPTION>",
text_input=None,
output_dir=OUTPUT_DIR
):
# run florence-2 object detection in demo
image = Image.open(image_path).convert("RGB")
results = run_florence2(task_prompt, text_input, florence2_model, florence2_processor, image)
""" Florence-2 Object Detection Output Format
{'<DENSE_REGION_CAPTION>':
{
'bboxes':
[
[33.599998474121094, 159.59999084472656, 596.7999877929688, 371.7599792480469],
[454.0799865722656, 96.23999786376953, 580.7999877929688, 261.8399963378906],
[224.95999145507812, 86.15999603271484, 333.7599792480469, 164.39999389648438],
[449.5999755859375, 276.239990234375, 554.5599975585938, 370.3199768066406],
[91.19999694824219, 280.0799865722656, 198.0800018310547, 370.3199768066406]
],
'labels': ['turquoise Volkswagen Beetle', 'wooden double doors with metal handles', 'wheel', 'wheel', 'door']
}
}
"""
results = results[task_prompt]
# parse florence-2 detection results
input_boxes = np.array(results["bboxes"])
class_names = results["labels"]
class_ids = np.array(list(range(len(class_names))))
# predict mask with SAM 2
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
# specify labels
labels = [
f"{class_name}" for class_name in class_names
]
# visualization results
img = cv2.imread(image_path)
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_dense_region_cap_annotated_image.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_dense_region_cap_image_with_mask.jpg"), annotated_frame)
print(f'Successfully save annotated image to "{output_dir}"')
"""
Pipeline 3: Region Proposal + Segmentation
"""
def region_proposal_and_segmentation(
florence2_model,
florence2_processor,
sam2_predictor,
image_path,
task_prompt="<REGION_PROPOSAL>",
text_input=None,
output_dir=OUTPUT_DIR
):
# run florence-2 object detection in demo
image = Image.open(image_path).convert("RGB")
results = run_florence2(task_prompt, text_input, florence2_model, florence2_processor, image)
""" Florence-2 Object Detection Output Format
{'<REGION_PROPOSAL>':
{
'bboxes':
[
[33.599998474121094, 159.59999084472656, 596.7999877929688, 371.7599792480469],
[454.0799865722656, 96.23999786376953, 580.7999877929688, 261.8399963378906],
[224.95999145507812, 86.15999603271484, 333.7599792480469, 164.39999389648438],
[449.5999755859375, 276.239990234375, 554.5599975585938, 370.3199768066406],
[91.19999694824219, 280.0799865722656, 198.0800018310547, 370.3199768066406]
],
'labels': ['', '', '', '', '', '', '']
}
}
"""
results = results[task_prompt]
# parse florence-2 detection results
input_boxes = np.array(results["bboxes"])
class_names = results["labels"]
class_ids = np.array(list(range(len(class_names))))
# predict mask with SAM 2
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
# specify labels
labels = [
f"region_{idx}" for idx, class_name in enumerate(class_names)
]
# visualization results
img = cv2.imread(image_path)
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_region_proposal.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_region_proposal_with_mask.jpg"), annotated_frame)
print(f'Successfully save annotated image to "{output_dir}"')
"""
Pipeline 4: Phrase Grounding + Segmentation
"""
def phrase_grounding_and_segmentation(
florence2_model,
florence2_processor,
sam2_predictor,
image_path,
task_prompt="<CAPTION_TO_PHRASE_GROUNDING>",
text_input=None,
output_dir=OUTPUT_DIR
):
# run florence-2 object detection in demo
image = Image.open(image_path).convert("RGB")
results = run_florence2(task_prompt, text_input, florence2_model, florence2_processor, image)
""" Florence-2 Object Detection Output Format
{'<CAPTION_TO_PHRASE_GROUNDING>':
{
'bboxes':
[
[34.23999786376953, 159.1199951171875, 582.0800170898438, 374.6399841308594],
[1.5999999046325684, 4.079999923706055, 639.0399780273438, 305.03997802734375]
],
'labels': ['A green car', 'a yellow building']
}
}
"""
assert text_input is not None, "Text input should not be none when calling phrase grounding pipeline."
results = results[task_prompt]
# parse florence-2 detection results
input_boxes = np.array(results["bboxes"])
class_names = results["labels"]
class_ids = np.array(list(range(len(class_names))))
# predict mask with SAM 2
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
# specify labels
labels = [
f"{class_name}" for class_name in class_names
]
# visualization results
img = cv2.imread(image_path)
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_phrase_grounding.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(output_dir, "grounded_sam2_florence2_phrase_grounding_with_mask.jpg"), annotated_frame)
print(f'Successfully save annotated image to "{output_dir}"')
if __name__ == "__main__":
image_path = "./notebooks/images/groceries.jpg"
parser = argparse.ArgumentParser("Grounded SAM 2 Florence-2 Demos", add_help=True)
parser.add_argument("--image_path", type=str, default="./notebooks/images/cars.jpg", required=True, help="path to image file")
parser.add_argument("--pipeline", type=str, default="object_detection_segmentation", required=True, help="path to image file")
args = parser.parse_args()
# pipeline-1: detection + segmentation
object_detection_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
image_path=image_path
)
IMAGE_PATH = args.image_path
PIPELINE = args.pipeline
print(f"Running pipeline: {PIPELINE} now.")
if PIPELINE == "object_detection_segmentation":
# pipeline-1: detection + segmentation
object_detection_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
image_path=IMAGE_PATH
)
elif PIPELINE == "dense_region_caption_segmentation":
# pipeline-2: dense region caption + segmentation
dense_region_caption_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
image_path=IMAGE_PATH
)
elif PIPELINE == "region_proposal_segmentation":
# pipeline-3: dense region caption + segmentation
region_proposal_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
image_path=IMAGE_PATH
)
elif PIPELINE == "phrase_grounding_segmentation":
# pipeline-4: phrase grounding + segmentation
phrase_grounding_and_segmentation(
florence2_model=florence2_model,
florence2_processor=florence2_processor,
sam2_predictor=sam2_predictor,
image_path=IMAGE_PATH,
text_input="The image shows two vintage Chevrolet cars parked side by side, with one being a red convertible and the other a pink sedan, \
set against the backdrop of an urban area with a multi-story building and trees. \
The cars have Cuban license plates, indicating a location likely in Cuba."
)
else:
raise NotImplementedError(f"Pipeline: {args.pipeline} is not implemented at this time")