support gsam2 image predictor model
This commit is contained in:
99
sam2/utils/transforms.py
Normal file
99
sam2/utils/transforms.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torchvision.transforms import Normalize, Resize, ToTensor
|
||||
|
||||
|
||||
class SAM2Transforms(nn.Module):
|
||||
def __init__(
|
||||
self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
|
||||
):
|
||||
"""
|
||||
Transforms for SAM2.
|
||||
"""
|
||||
super().__init__()
|
||||
self.resolution = resolution
|
||||
self.mask_threshold = mask_threshold
|
||||
self.max_hole_area = max_hole_area
|
||||
self.max_sprinkle_area = max_sprinkle_area
|
||||
self.mean = [0.485, 0.456, 0.406]
|
||||
self.std = [0.229, 0.224, 0.225]
|
||||
self.to_tensor = ToTensor()
|
||||
self.transforms = torch.jit.script(
|
||||
nn.Sequential(
|
||||
Resize((self.resolution, self.resolution)),
|
||||
Normalize(self.mean, self.std),
|
||||
)
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.to_tensor(x)
|
||||
return self.transforms(x)
|
||||
|
||||
def forward_batch(self, img_list):
|
||||
img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
|
||||
img_batch = torch.stack(img_batch, dim=0)
|
||||
return img_batch
|
||||
|
||||
def transform_coords(
|
||||
self, coords: torch.Tensor, normalize=False, orig_hw=None
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
|
||||
If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
||||
|
||||
Returns
|
||||
Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
|
||||
"""
|
||||
if normalize:
|
||||
assert orig_hw is not None
|
||||
h, w = orig_hw
|
||||
coords = coords.clone()
|
||||
coords[..., 0] = coords[..., 0] / w
|
||||
coords[..., 1] = coords[..., 1] / h
|
||||
|
||||
coords = coords * self.resolution # unnormalize coords
|
||||
return coords
|
||||
|
||||
def transform_boxes(
|
||||
self, boxes: torch.Tensor, normalize=False, orig_hw=None
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
|
||||
if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
||||
"""
|
||||
boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
|
||||
return boxes
|
||||
|
||||
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
|
||||
"""
|
||||
Perform PostProcessing on output masks.
|
||||
"""
|
||||
from sam2.utils.misc import get_connected_components
|
||||
|
||||
masks = masks.float()
|
||||
if self.max_hole_area > 0:
|
||||
# Holes are those connected components in background with area <= self.fill_hole_area
|
||||
# (background regions are those with mask scores <= self.mask_threshold)
|
||||
mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image
|
||||
labels, areas = get_connected_components(mask_flat <= self.mask_threshold)
|
||||
is_hole = (labels > 0) & (areas <= self.max_hole_area)
|
||||
is_hole = is_hole.reshape_as(masks)
|
||||
# We fill holes with a small positive mask score (10.0) to change them to foreground.
|
||||
masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
|
||||
|
||||
if self.max_sprinkle_area > 0:
|
||||
labels, areas = get_connected_components(mask_flat > self.mask_threshold)
|
||||
is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
|
||||
is_hole = is_hole.reshape_as(masks)
|
||||
# We fill holes with negative mask score (-10.0) to change them to background.
|
||||
masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
|
||||
|
||||
masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
|
||||
return masks
|
Reference in New Issue
Block a user