support gsam2 image predictor model
This commit is contained in:
273
grounding_dino/groundingdino/util/inference.py
Normal file
273
grounding_dino/groundingdino/util/inference.py
Normal file
@@ -0,0 +1,273 @@
|
||||
from typing import Tuple, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision.ops import box_convert
|
||||
import bisect
|
||||
|
||||
import grounding_dino.groundingdino.datasets.transforms as T
|
||||
from grounding_dino.groundingdino.models import build_model
|
||||
from grounding_dino.groundingdino.util.misc import clean_state_dict
|
||||
from grounding_dino.groundingdino.util.slconfig import SLConfig
|
||||
from grounding_dino.groundingdino.util.utils import get_phrases_from_posmap
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
# OLD API
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
def preprocess_caption(caption: str) -> str:
|
||||
result = caption.lower().strip()
|
||||
if result.endswith("."):
|
||||
return result
|
||||
return result + "."
|
||||
|
||||
|
||||
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
|
||||
args = SLConfig.fromfile(model_config_path)
|
||||
args.device = device
|
||||
model = build_model(args)
|
||||
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
||||
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
||||
transform = T.Compose(
|
||||
[
|
||||
T.RandomResize([800], max_size=1333),
|
||||
T.ToTensor(),
|
||||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||
]
|
||||
)
|
||||
image_source = Image.open(image_path).convert("RGB")
|
||||
image = np.asarray(image_source)
|
||||
image_transformed, _ = transform(image_source, None)
|
||||
return image, image_transformed
|
||||
|
||||
|
||||
def predict(
|
||||
model,
|
||||
image: torch.Tensor,
|
||||
caption: str,
|
||||
box_threshold: float,
|
||||
text_threshold: float,
|
||||
device: str = "cuda",
|
||||
remove_combined: bool = False
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
||||
caption = preprocess_caption(caption=caption)
|
||||
|
||||
model = model.to(device)
|
||||
image = image.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(image[None], captions=[caption])
|
||||
|
||||
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
|
||||
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
|
||||
|
||||
mask = prediction_logits.max(dim=1)[0] > box_threshold
|
||||
logits = prediction_logits[mask] # logits.shape = (n, 256)
|
||||
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
|
||||
|
||||
tokenizer = model.tokenizer
|
||||
tokenized = tokenizer(caption)
|
||||
|
||||
if remove_combined:
|
||||
sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
|
||||
|
||||
phrases = []
|
||||
for logit in logits:
|
||||
max_idx = logit.argmax()
|
||||
insert_idx = bisect.bisect_left(sep_idx, max_idx)
|
||||
right_idx = sep_idx[insert_idx]
|
||||
left_idx = sep_idx[insert_idx - 1]
|
||||
phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', ''))
|
||||
else:
|
||||
phrases = [
|
||||
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
|
||||
for logit
|
||||
in logits
|
||||
]
|
||||
|
||||
return boxes, logits.max(dim=1)[0], phrases
|
||||
|
||||
|
||||
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
|
||||
"""
|
||||
This function annotates an image with bounding boxes and labels.
|
||||
|
||||
Parameters:
|
||||
image_source (np.ndarray): The source image to be annotated.
|
||||
boxes (torch.Tensor): A tensor containing bounding box coordinates.
|
||||
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
||||
phrases (List[str]): A list of labels for each bounding box.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The annotated image.
|
||||
"""
|
||||
h, w, _ = image_source.shape
|
||||
boxes = boxes * torch.Tensor([w, h, w, h])
|
||||
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
||||
detections = sv.Detections(xyxy=xyxy)
|
||||
|
||||
labels = [
|
||||
f"{phrase} {logit:.2f}"
|
||||
for phrase, logit
|
||||
in zip(phrases, logits)
|
||||
]
|
||||
|
||||
bbox_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
||||
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
||||
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
||||
annotated_frame = bbox_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
||||
return annotated_frame
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
# NEW API
|
||||
# ----------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
class Model:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_config_path: str,
|
||||
model_checkpoint_path: str,
|
||||
device: str = "cuda"
|
||||
):
|
||||
self.model = load_model(
|
||||
model_config_path=model_config_path,
|
||||
model_checkpoint_path=model_checkpoint_path,
|
||||
device=device
|
||||
).to(device)
|
||||
self.device = device
|
||||
|
||||
def predict_with_caption(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
caption: str,
|
||||
box_threshold: float = 0.35,
|
||||
text_threshold: float = 0.25
|
||||
) -> Tuple[sv.Detections, List[str]]:
|
||||
"""
|
||||
import cv2
|
||||
|
||||
image = cv2.imread(IMAGE_PATH)
|
||||
|
||||
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
||||
detections, labels = model.predict_with_caption(
|
||||
image=image,
|
||||
caption=caption,
|
||||
box_threshold=BOX_THRESHOLD,
|
||||
text_threshold=TEXT_THRESHOLD
|
||||
)
|
||||
|
||||
import supervision as sv
|
||||
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
|
||||
"""
|
||||
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
||||
boxes, logits, phrases = predict(
|
||||
model=self.model,
|
||||
image=processed_image,
|
||||
caption=caption,
|
||||
box_threshold=box_threshold,
|
||||
text_threshold=text_threshold,
|
||||
device=self.device)
|
||||
source_h, source_w, _ = image.shape
|
||||
detections = Model.post_process_result(
|
||||
source_h=source_h,
|
||||
source_w=source_w,
|
||||
boxes=boxes,
|
||||
logits=logits)
|
||||
return detections, phrases
|
||||
|
||||
def predict_with_classes(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
classes: List[str],
|
||||
box_threshold: float,
|
||||
text_threshold: float
|
||||
) -> sv.Detections:
|
||||
"""
|
||||
import cv2
|
||||
|
||||
image = cv2.imread(IMAGE_PATH)
|
||||
|
||||
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
||||
detections = model.predict_with_classes(
|
||||
image=image,
|
||||
classes=CLASSES,
|
||||
box_threshold=BOX_THRESHOLD,
|
||||
text_threshold=TEXT_THRESHOLD
|
||||
)
|
||||
|
||||
|
||||
import supervision as sv
|
||||
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_image = box_annotator.annotate(scene=image, detections=detections)
|
||||
"""
|
||||
caption = ". ".join(classes)
|
||||
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
||||
boxes, logits, phrases = predict(
|
||||
model=self.model,
|
||||
image=processed_image,
|
||||
caption=caption,
|
||||
box_threshold=box_threshold,
|
||||
text_threshold=text_threshold,
|
||||
device=self.device)
|
||||
source_h, source_w, _ = image.shape
|
||||
detections = Model.post_process_result(
|
||||
source_h=source_h,
|
||||
source_w=source_w,
|
||||
boxes=boxes,
|
||||
logits=logits)
|
||||
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
|
||||
detections.class_id = class_id
|
||||
return detections
|
||||
|
||||
@staticmethod
|
||||
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
|
||||
transform = T.Compose(
|
||||
[
|
||||
T.RandomResize([800], max_size=1333),
|
||||
T.ToTensor(),
|
||||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||
]
|
||||
)
|
||||
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
||||
image_transformed, _ = transform(image_pillow, None)
|
||||
return image_transformed
|
||||
|
||||
@staticmethod
|
||||
def post_process_result(
|
||||
source_h: int,
|
||||
source_w: int,
|
||||
boxes: torch.Tensor,
|
||||
logits: torch.Tensor
|
||||
) -> sv.Detections:
|
||||
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
|
||||
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
||||
confidence = logits.numpy()
|
||||
return sv.Detections(xyxy=xyxy, confidence=confidence)
|
||||
|
||||
@staticmethod
|
||||
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
|
||||
class_ids = []
|
||||
for phrase in phrases:
|
||||
for class_ in classes:
|
||||
if class_ in phrase:
|
||||
class_ids.append(classes.index(class_))
|
||||
break
|
||||
else:
|
||||
class_ids.append(None)
|
||||
return np.array(class_ids)
|
Reference in New Issue
Block a user