support gsam2 image predictor model
This commit is contained in:
114
grounded_sam2_hf_model_demo.py
Normal file
114
grounded_sam2_hf_model_demo.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
from PIL import Image
|
||||
from sam2.build_sam import build_sam2
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
||||
|
||||
# environment settings
|
||||
# use bfloat16
|
||||
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
||||
|
||||
if torch.cuda.get_device_properties(0).major >= 8:
|
||||
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# build SAM2 image predictor
|
||||
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
||||
model_cfg = "sam2_hiera_l.yaml"
|
||||
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
||||
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
||||
|
||||
# build grounding dino from huggingface
|
||||
model_id = "IDEA-Research/grounding-dino-tiny"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
|
||||
|
||||
|
||||
# setup the input image and text prompt for SAM 2 and Grounding DINO
|
||||
# VERY important: text queries need to be lowercased + end with a dot
|
||||
text = "car. tire."
|
||||
img_path = 'notebooks/images/truck.jpg'
|
||||
|
||||
image = Image.open(img_path)
|
||||
|
||||
sam2_predictor.set_image(np.array(image.convert("RGB")))
|
||||
|
||||
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
|
||||
with torch.no_grad():
|
||||
outputs = grounding_model(**inputs)
|
||||
|
||||
results = processor.post_process_grounded_object_detection(
|
||||
outputs,
|
||||
inputs.input_ids,
|
||||
box_threshold=0.4,
|
||||
text_threshold=0.3,
|
||||
target_sizes=[image.size[::-1]]
|
||||
)
|
||||
|
||||
"""
|
||||
Results is a list of dict with the following structure:
|
||||
[
|
||||
{
|
||||
'scores': tensor([0.7969, 0.6469, 0.6002, 0.4220], device='cuda:0'),
|
||||
'labels': ['car', 'tire', 'tire', 'tire'],
|
||||
'boxes': tensor([[ 89.3244, 278.6940, 1710.3505, 851.5143],
|
||||
[1392.4701, 554.4064, 1628.6133, 777.5872],
|
||||
[ 436.1182, 621.8940, 676.5255, 851.6897],
|
||||
[1236.0990, 688.3547, 1400.2427, 753.1256]], device='cuda:0')
|
||||
}
|
||||
]
|
||||
"""
|
||||
|
||||
# get the box prompt for SAM 2
|
||||
input_boxes = results[0]["boxes"].cpu().numpy()
|
||||
|
||||
masks, scores, logits = sam2_predictor.predict(
|
||||
point_coords=None,
|
||||
box=input_boxes,
|
||||
point_labels=None,
|
||||
multimask_output=False,
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
Post-process the output of the model to get the masks, scores, and logits for visualization
|
||||
"""
|
||||
# convert the shape to (n, H, W)
|
||||
if masks.ndim == 3:
|
||||
masks = masks[None]
|
||||
scores = scores[None]
|
||||
logits = logits[None]
|
||||
elif masks.ndim == 4:
|
||||
masks = masks.squeeze(1)
|
||||
|
||||
|
||||
confidences = results[0]["scores"].cpu().numpy().tolist()
|
||||
class_names = results[0]["labels"]
|
||||
|
||||
labels = [
|
||||
f"{class_name} {confidence:.2f}"
|
||||
for class_name, confidence
|
||||
in zip(class_names, confidences)
|
||||
]
|
||||
|
||||
"""
|
||||
Visualize image with supervision useful API
|
||||
"""
|
||||
img = cv2.imread(img_path)
|
||||
detections = sv.Detections(
|
||||
xyxy=input_boxes, # (n, 4)
|
||||
mask=masks, # (n, h, w)
|
||||
|
||||
)
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections, labels=labels)
|
||||
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
|
||||
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
|
Reference in New Issue
Block a user