Merge branch 'main' into patch-1
This commit is contained in:
@@ -92,14 +92,14 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|||||||
state = predictor.init_state(<your_video>)
|
state = predictor.init_state(<your_video>)
|
||||||
|
|
||||||
# add new prompts and instantly get the output on the same frame
|
# add new prompts and instantly get the output on the same frame
|
||||||
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
|
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
|
||||||
|
|
||||||
# propagate the prompts to get masklets throughout the video
|
# propagate the prompts to get masklets throughout the video
|
||||||
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
|
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
|
||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
|
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add click or box prompts, make refinements, and track multiple objects in videos.
|
||||||
|
|
||||||
## Load from 🤗 Hugging Face
|
## Load from 🤗 Hugging Face
|
||||||
|
|
||||||
@@ -130,7 +130,7 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
|||||||
state = predictor.init_state(<your_video>)
|
state = predictor.init_state(<your_video>)
|
||||||
|
|
||||||
# add new prompts and instantly get the output on the same frame
|
# add new prompts and instantly get the output on the same frame
|
||||||
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
|
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):
|
||||||
|
|
||||||
# propagate the prompts to get masklets throughout the video
|
# propagate the prompts to get masklets throughout the video
|
||||||
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
|
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
|
||||||
|
File diff suppressed because one or more lines are too long
@@ -4,6 +4,7 @@
|
|||||||
# This source code is licensed under the license found in the
|
# This source code is licensed under the license found in the
|
||||||
# LICENSE file in the root directory of this source tree.
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import warnings
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
@@ -163,29 +164,66 @@ class SAM2VideoPredictor(SAM2Base):
|
|||||||
return len(inference_state["obj_idx_to_id"])
|
return len(inference_state["obj_idx_to_id"])
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def add_new_points(
|
def add_new_points_or_box(
|
||||||
self,
|
self,
|
||||||
inference_state,
|
inference_state,
|
||||||
frame_idx,
|
frame_idx,
|
||||||
obj_id,
|
obj_id,
|
||||||
points,
|
points=None,
|
||||||
labels,
|
labels=None,
|
||||||
clear_old_points=True,
|
clear_old_points=True,
|
||||||
normalize_coords=True,
|
normalize_coords=True,
|
||||||
|
box=None,
|
||||||
):
|
):
|
||||||
"""Add new points to a frame."""
|
"""Add new points to a frame."""
|
||||||
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
||||||
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
||||||
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
||||||
|
|
||||||
if not isinstance(points, torch.Tensor):
|
if (points is not None) != (labels is not None):
|
||||||
|
raise ValueError("points and labels must be provided together")
|
||||||
|
if points is None and box is None:
|
||||||
|
raise ValueError("at least one of points or box must be provided as input")
|
||||||
|
|
||||||
|
if points is None:
|
||||||
|
points = torch.zeros(0, 2, dtype=torch.float32)
|
||||||
|
elif not isinstance(points, torch.Tensor):
|
||||||
points = torch.tensor(points, dtype=torch.float32)
|
points = torch.tensor(points, dtype=torch.float32)
|
||||||
if not isinstance(labels, torch.Tensor):
|
if labels is None:
|
||||||
|
labels = torch.zeros(0, dtype=torch.int32)
|
||||||
|
elif not isinstance(labels, torch.Tensor):
|
||||||
labels = torch.tensor(labels, dtype=torch.int32)
|
labels = torch.tensor(labels, dtype=torch.int32)
|
||||||
if points.dim() == 2:
|
if points.dim() == 2:
|
||||||
points = points.unsqueeze(0) # add batch dimension
|
points = points.unsqueeze(0) # add batch dimension
|
||||||
if labels.dim() == 1:
|
if labels.dim() == 1:
|
||||||
labels = labels.unsqueeze(0) # add batch dimension
|
labels = labels.unsqueeze(0) # add batch dimension
|
||||||
|
|
||||||
|
# If `box` is provided, we add it as the first two points with labels 2 and 3
|
||||||
|
# along with the user-provided points (consistent with how SAM 2 is trained).
|
||||||
|
if box is not None:
|
||||||
|
if not clear_old_points:
|
||||||
|
raise ValueError(
|
||||||
|
"cannot add box without clearing old points, since "
|
||||||
|
"box prompt must be provided before any point prompt "
|
||||||
|
"(please use clear_old_points=True instead)"
|
||||||
|
)
|
||||||
|
if inference_state["tracking_has_started"]:
|
||||||
|
warnings.warn(
|
||||||
|
"You are adding a box after tracking starts. SAM 2 may not always be "
|
||||||
|
"able to incorporate a box prompt for *refinement*. If you intend to "
|
||||||
|
"use box prompt as an *initial* input before tracking, please call "
|
||||||
|
"'reset_state' on the inference state to restart from scratch.",
|
||||||
|
category=UserWarning,
|
||||||
|
stacklevel=2,
|
||||||
|
)
|
||||||
|
if not isinstance(box, torch.Tensor):
|
||||||
|
box = torch.tensor(box, dtype=torch.float32, device=points.device)
|
||||||
|
box_coords = box.reshape(1, 2, 2)
|
||||||
|
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
|
||||||
|
box_labels = box_labels.reshape(1, 2)
|
||||||
|
points = torch.cat([box_coords, points], dim=1)
|
||||||
|
labels = torch.cat([box_labels, labels], dim=1)
|
||||||
|
|
||||||
if normalize_coords:
|
if normalize_coords:
|
||||||
video_H = inference_state["video_height"]
|
video_H = inference_state["video_height"]
|
||||||
video_W = inference_state["video_width"]
|
video_W = inference_state["video_width"]
|
||||||
@@ -268,6 +306,10 @@ class SAM2VideoPredictor(SAM2Base):
|
|||||||
)
|
)
|
||||||
return frame_idx, obj_ids, video_res_masks
|
return frame_idx, obj_ids, video_res_masks
|
||||||
|
|
||||||
|
def add_new_points(self, *args, **kwargs):
|
||||||
|
"""Deprecated method. Please use `add_new_points_or_box` instead."""
|
||||||
|
return self.add_new_points_or_box(*args, **kwargs)
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def add_new_mask(
|
def add_new_mask(
|
||||||
self,
|
self,
|
||||||
@@ -548,7 +590,7 @@ class SAM2VideoPredictor(SAM2Base):
|
|||||||
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
||||||
# Find all the frames that contain temporary outputs for any objects
|
# Find all the frames that contain temporary outputs for any objects
|
||||||
# (these should be the frames that have just received clicks for mask inputs
|
# (these should be the frames that have just received clicks for mask inputs
|
||||||
# via `add_new_points` or `add_new_mask`)
|
# via `add_new_points_or_box` or `add_new_mask`)
|
||||||
temp_frame_inds = set()
|
temp_frame_inds = set()
|
||||||
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
||||||
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
|
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
|
||||||
|
55
setup.py
55
setup.py
@@ -44,55 +44,64 @@ BUILD_CUDA = os.getenv("SAM2_BUILD_CUDA", "1") == "1"
|
|||||||
# You may force stopping on errors with `export SAM2_BUILD_ALLOW_ERRORS=0`.
|
# You may force stopping on errors with `export SAM2_BUILD_ALLOW_ERRORS=0`.
|
||||||
BUILD_ALLOW_ERRORS = os.getenv("SAM2_BUILD_ALLOW_ERRORS", "1") == "1"
|
BUILD_ALLOW_ERRORS = os.getenv("SAM2_BUILD_ALLOW_ERRORS", "1") == "1"
|
||||||
|
|
||||||
|
# Catch and skip errors during extension building and print a warning message
|
||||||
|
# (note that this message only shows up under verbose build mode
|
||||||
|
# "pip install -v -e ." or "python setup.py build_ext -v")
|
||||||
|
CUDA_ERROR_MSG = (
|
||||||
|
"{}\n\n"
|
||||||
|
"Failed to build the SAM 2 CUDA extension due to the error above. "
|
||||||
|
"You can still use SAM 2, but some post-processing functionality may be limited "
|
||||||
|
"(see https://github.com/facebookresearch/segment-anything-2/blob/main/INSTALL.md).\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_extensions():
|
def get_extensions():
|
||||||
if not BUILD_CUDA:
|
if not BUILD_CUDA:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
srcs = ["sam2/csrc/connected_components.cu"]
|
try:
|
||||||
compile_args = {
|
srcs = ["sam2/csrc/connected_components.cu"]
|
||||||
"cxx": [],
|
compile_args = {
|
||||||
"nvcc": [
|
"cxx": [],
|
||||||
"-DCUDA_HAS_FP16=1",
|
"nvcc": [
|
||||||
"-D__CUDA_NO_HALF_OPERATORS__",
|
"-DCUDA_HAS_FP16=1",
|
||||||
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
"-D__CUDA_NO_HALF_OPERATORS__",
|
||||||
"-D__CUDA_NO_HALF2_OPERATORS__",
|
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
||||||
],
|
"-D__CUDA_NO_HALF2_OPERATORS__",
|
||||||
}
|
],
|
||||||
ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)]
|
}
|
||||||
|
ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)]
|
||||||
|
except Exception as e:
|
||||||
|
if BUILD_ALLOW_ERRORS:
|
||||||
|
print(CUDA_ERROR_MSG.format(e))
|
||||||
|
ext_modules = []
|
||||||
|
else:
|
||||||
|
raise e
|
||||||
|
|
||||||
return ext_modules
|
return ext_modules
|
||||||
|
|
||||||
|
|
||||||
class BuildExtensionIgnoreErrors(BuildExtension):
|
class BuildExtensionIgnoreErrors(BuildExtension):
|
||||||
# Catch and skip errors during extension building and print a warning message
|
|
||||||
# (note that this message only shows up under verbose build mode
|
|
||||||
# "pip install -v -e ." or "python setup.py build_ext -v")
|
|
||||||
ERROR_MSG = (
|
|
||||||
"{}\n\n"
|
|
||||||
"Failed to build the SAM 2 CUDA extension due to the error above. "
|
|
||||||
"You can still use SAM 2, but some post-processing functionality may be limited "
|
|
||||||
"(see https://github.com/facebookresearch/segment-anything-2/blob/main/INSTALL.md).\n"
|
|
||||||
)
|
|
||||||
|
|
||||||
def finalize_options(self):
|
def finalize_options(self):
|
||||||
try:
|
try:
|
||||||
super().finalize_options()
|
super().finalize_options()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(self.ERROR_MSG.format(e))
|
print(CUDA_ERROR_MSG.format(e))
|
||||||
self.extensions = []
|
self.extensions = []
|
||||||
|
|
||||||
def build_extensions(self):
|
def build_extensions(self):
|
||||||
try:
|
try:
|
||||||
super().build_extensions()
|
super().build_extensions()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(self.ERROR_MSG.format(e))
|
print(CUDA_ERROR_MSG.format(e))
|
||||||
self.extensions = []
|
self.extensions = []
|
||||||
|
|
||||||
def get_ext_filename(self, ext_name):
|
def get_ext_filename(self, ext_name):
|
||||||
try:
|
try:
|
||||||
return super().get_ext_filename(ext_name)
|
return super().get_ext_filename(ext_name)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(self.ERROR_MSG.format(e))
|
print(CUDA_ERROR_MSG.format(e))
|
||||||
self.extensions = []
|
self.extensions = []
|
||||||
return "_C.so"
|
return "_C.so"
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user