Merge pull request #205 from facebookresearch/haitham/fix_hf_image_predictor

Fix HF image predictor
This commit is contained in:
Haitham Khedr
2024-08-12 17:04:04 -07:00
committed by GitHub
4 changed files with 27 additions and 4 deletions

View File

@@ -53,6 +53,7 @@ class SAM2AutomaticMaskGenerator:
output_mode: str = "binary_mask",
use_m2m: bool = False,
multimask_output: bool = True,
**kwargs,
) -> None:
"""
Using a SAM 2 model, generates masks for the entire image.
@@ -148,6 +149,23 @@ class SAM2AutomaticMaskGenerator:
self.use_m2m = use_m2m
self.multimask_output = multimask_output
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
"""
Load a pretrained model from the Hugging Face hub.
Arguments:
model_id (str): The Hugging Face repository ID.
**kwargs: Additional arguments to pass to the model constructor.
Returns:
(SAM2AutomaticMaskGenerator): The loaded model.
"""
from sam2.build_sam import build_sam2_hf
sam_model = build_sam2_hf(model_id, **kwargs)
return cls(sam_model, **kwargs)
@torch.no_grad()
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
"""

View File

@@ -19,6 +19,7 @@ def build_sam2(
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
**kwargs,
):
if apply_postprocessing:
@@ -47,6 +48,7 @@ def build_sam2_video_predictor(
mode="eval",
hydra_overrides_extra=[],
apply_postprocessing=True,
**kwargs,
):
hydra_overrides = [
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",

View File

@@ -24,6 +24,7 @@ class SAM2ImagePredictor:
mask_threshold=0.0,
max_hole_area=0.0,
max_sprinkle_area=0.0,
**kwargs,
) -> None:
"""
Uses SAM-2 to calculate the image embedding for an image, and then
@@ -33,8 +34,10 @@ class SAM2ImagePredictor:
sam_model (Sam-2): The model to use for mask prediction.
mask_threshold (float): The threshold to use when converting mask logits
to binary masks. Masks are thresholded at 0 by default.
fill_hole_area (int): If fill_hole_area > 0, we fill small holes in up to
the maximum area of fill_hole_area in low_res_masks.
max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
the maximum area of max_hole_area in low_res_masks.
max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
the maximum area of max_sprinkle_area in low_res_masks.
"""
super().__init__()
self.model = sam_model
@@ -77,7 +80,7 @@ class SAM2ImagePredictor:
from sam2.build_sam import build_sam2_hf
sam_model = build_sam2_hf(model_id, **kwargs)
return cls(sam_model)
return cls(sam_model, **kwargs)
@torch.no_grad()
def set_image(

View File

@@ -121,7 +121,7 @@ class SAM2VideoPredictor(SAM2Base):
from sam2.build_sam import build_sam2_video_predictor_hf
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
return cls(sam_model)
return sam_model
def _obj_id_to_idx(self, inference_state, obj_id):
"""Map client-side object id to model-side object index."""