Initial commit
This commit is contained in:
238
sam2/utils/misc.py
Normal file
238
sam2/utils/misc.py
Normal file
@@ -0,0 +1,238 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def get_sdpa_settings():
|
||||
if torch.cuda.is_available():
|
||||
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
||||
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
||||
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
||||
if not use_flash_attn:
|
||||
warnings.warn(
|
||||
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
||||
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
||||
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
||||
if pytorch_version < (2, 2):
|
||||
warnings.warn(
|
||||
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
||||
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
||||
category=UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
||||
else:
|
||||
old_gpu = True
|
||||
use_flash_attn = False
|
||||
math_kernel_on = True
|
||||
|
||||
return old_gpu, use_flash_attn, math_kernel_on
|
||||
|
||||
|
||||
def get_connected_components(mask):
|
||||
"""
|
||||
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
||||
|
||||
Inputs:
|
||||
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
||||
background.
|
||||
|
||||
Outputs:
|
||||
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
||||
for foreground pixels and 0 for background pixels.
|
||||
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
||||
components for foreground pixels and 0 for background pixels.
|
||||
"""
|
||||
from sam2 import _C
|
||||
|
||||
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
||||
|
||||
|
||||
def mask_to_box(masks: torch.Tensor):
|
||||
"""
|
||||
compute bounding box given an input mask
|
||||
|
||||
Inputs:
|
||||
- masks: [B, 1, H, W] boxes, dtype=torch.Tensor
|
||||
|
||||
Returns:
|
||||
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
||||
"""
|
||||
B, _, h, w = masks.shape
|
||||
device = masks.device
|
||||
xs = torch.arange(w, device=device, dtype=torch.int32)
|
||||
ys = torch.arange(h, device=device, dtype=torch.int32)
|
||||
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
||||
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
||||
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
||||
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
||||
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
||||
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
||||
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
||||
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
||||
|
||||
return bbox_coords
|
||||
|
||||
|
||||
def _load_img_as_tensor(img_path, image_size):
|
||||
img_pil = Image.open(img_path)
|
||||
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
||||
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
||||
img_np = img_np / 255.0
|
||||
else:
|
||||
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
||||
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
||||
video_width, video_height = img_pil.size # the original video size
|
||||
return img, video_height, video_width
|
||||
|
||||
|
||||
class AsyncVideoFrameLoader:
|
||||
"""
|
||||
A list of video frames to be load asynchronously without blocking session start.
|
||||
"""
|
||||
|
||||
def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std):
|
||||
self.img_paths = img_paths
|
||||
self.image_size = image_size
|
||||
self.offload_video_to_cpu = offload_video_to_cpu
|
||||
self.img_mean = img_mean
|
||||
self.img_std = img_std
|
||||
# items in `self._images` will be loaded asynchronously
|
||||
self.images = [None] * len(img_paths)
|
||||
# catch and raise any exceptions in the async loading thread
|
||||
self.exception = None
|
||||
# video_height and video_width be filled when loading the first image
|
||||
self.video_height = None
|
||||
self.video_width = None
|
||||
|
||||
# load the first frame to fill video_height and video_width and also
|
||||
# to cache it (since it's most likely where the user will click)
|
||||
self.__getitem__(0)
|
||||
|
||||
# load the rest of frames asynchronously without blocking the session start
|
||||
def _load_frames():
|
||||
try:
|
||||
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
||||
self.__getitem__(n)
|
||||
except Exception as e:
|
||||
self.exception = e
|
||||
|
||||
self.thread = Thread(target=_load_frames, daemon=True)
|
||||
self.thread.start()
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.exception is not None:
|
||||
raise RuntimeError("Failure in frame loading thread") from self.exception
|
||||
|
||||
img = self.images[index]
|
||||
if img is not None:
|
||||
return img
|
||||
|
||||
img, video_height, video_width = _load_img_as_tensor(
|
||||
self.img_paths[index], self.image_size
|
||||
)
|
||||
self.video_height = video_height
|
||||
self.video_width = video_width
|
||||
# normalize by mean and std
|
||||
img -= self.img_mean
|
||||
img /= self.img_std
|
||||
if not self.offload_video_to_cpu:
|
||||
img = img.cuda(non_blocking=True)
|
||||
self.images[index] = img
|
||||
return img
|
||||
|
||||
def __len__(self):
|
||||
return len(self.images)
|
||||
|
||||
|
||||
def load_video_frames(
|
||||
video_path,
|
||||
image_size,
|
||||
offload_video_to_cpu,
|
||||
img_mean=(0.485, 0.456, 0.406),
|
||||
img_std=(0.229, 0.224, 0.225),
|
||||
async_loading_frames=False,
|
||||
):
|
||||
"""
|
||||
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
||||
|
||||
The frames are resized to image_size x image_size and are loaded to GPU if
|
||||
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
||||
|
||||
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
||||
"""
|
||||
if isinstance(video_path, str) and os.path.isdir(video_path):
|
||||
jpg_folder = video_path
|
||||
else:
|
||||
raise NotImplementedError("Only JPEG frames are supported at this moment")
|
||||
|
||||
frame_names = [
|
||||
p
|
||||
for p in os.listdir(jpg_folder)
|
||||
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
||||
]
|
||||
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
||||
num_frames = len(frame_names)
|
||||
if num_frames == 0:
|
||||
raise RuntimeError(f"no images found in {jpg_folder}")
|
||||
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
||||
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
||||
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
||||
|
||||
if async_loading_frames:
|
||||
lazy_images = AsyncVideoFrameLoader(
|
||||
img_paths, image_size, offload_video_to_cpu, img_mean, img_std
|
||||
)
|
||||
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
||||
|
||||
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
||||
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
||||
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
||||
if not offload_video_to_cpu:
|
||||
images = images.cuda()
|
||||
img_mean = img_mean.cuda()
|
||||
img_std = img_std.cuda()
|
||||
# normalize by mean and std
|
||||
images -= img_mean
|
||||
images /= img_std
|
||||
return images, video_height, video_width
|
||||
|
||||
|
||||
def fill_holes_in_mask_scores(mask, max_area):
|
||||
"""
|
||||
A post processor to fill small holes in mask scores with area under `max_area`.
|
||||
"""
|
||||
# Holes are those connected components in background with area <= self.max_area
|
||||
# (background regions are those with mask scores <= 0)
|
||||
assert max_area > 0, "max_area must be positive"
|
||||
labels, areas = get_connected_components(mask <= 0)
|
||||
is_hole = (labels > 0) & (areas <= max_area)
|
||||
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
||||
mask = torch.where(is_hole, 0.1, mask)
|
||||
return mask
|
||||
|
||||
|
||||
def concat_points(old_point_inputs, new_points, new_labels):
|
||||
"""Add new points and labels to previous point inputs (add at the end)."""
|
||||
if old_point_inputs is None:
|
||||
points, labels = new_points, new_labels
|
||||
else:
|
||||
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
||||
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
||||
|
||||
return {"point_coords": points, "point_labels": labels}
|
Reference in New Issue
Block a user