Merge branch 'main' into patch-1

This commit is contained in:
Arun
2024-08-07 21:50:26 +05:30
committed by GitHub
4 changed files with 108 additions and 0 deletions

View File

@@ -101,6 +101,42 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
## Load from 🤗 Hugging Face
Alternatively, models can also be loaded from [Hugging Face](https://huggingface.co/models?search=facebook/sam2) (requires `pip install huggingface_hub`).
For image prediction:
```python
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)
```
For video prediction:
```python
import torch
from sam2.sam2_video_predictor import SAM2VideoPredictor
predictor = SAM2VideoPredictor.from_pretrained("facebook/sam2-hiera-large")
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
```
## Model Description
| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** |

View File

@@ -76,6 +76,44 @@ def build_sam2_video_predictor(
return model
def build_sam2_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
def build_sam2_video_predictor_hf(model_id, **kwargs):
from huggingface_hub import hf_hub_download
model_id_to_filenames = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": (
"sam2_hiera_b+.yaml",
"sam2_hiera_base_plus.pt",
),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_name, checkpoint_name = model_id_to_filenames[model_id]
ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
return build_sam2_video_predictor(
config_file=config_name, ckpt_path=ckpt_path, **kwargs
)
def _load_checkpoint(model, ckpt_path):
if ckpt_path is not None:
sd = torch.load(ckpt_path, map_location="cpu")["model"]

View File

@@ -62,6 +62,23 @@ class SAM2ImagePredictor:
(64, 64),
]
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
"""
Load a pretrained model from the Hugging Face hub.
Arguments:
model_id (str): The Hugging Face repository ID.
**kwargs: Additional arguments to pass to the model constructor.
Returns:
(SAM2ImagePredictor): The loaded model.
"""
from sam2.build_sam import build_sam2_hf
sam_model = build_sam2_hf(model_id, **kwargs)
return cls(sam_model)
@torch.no_grad()
def set_image(
self,

View File

@@ -103,6 +103,23 @@ class SAM2VideoPredictor(SAM2Base):
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
return inference_state
@classmethod
def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
"""
Load a pretrained model from the Hugging Face hub.
Arguments:
model_id (str): The Hugging Face repository ID.
**kwargs: Additional arguments to pass to the model constructor.
Returns:
(SAM2VideoPredictor): The loaded model.
"""
from sam2.build_sam import build_sam2_video_predictor_hf
sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
return cls(sam_model)
def _obj_id_to_idx(self, inference_state, obj_id):
"""Map client-side object id to model-side object index."""
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)