support slice inference on gd1.5 sam2 demo

This commit is contained in:
rentainhe
2024-10-24 16:57:04 +08:00
parent be550a93b1
commit 041bb0bfa4

View File

@@ -10,6 +10,7 @@ import os
import cv2
import json
import torch
import tempfile
import numpy as np
import supervision as sv
import pycocotools.mask as mask_util
@@ -27,6 +28,9 @@ IMG_PATH = "notebooks/images/cars.jpg"
SAM2_CHECKPOINT = "./checkpoints/sam2.1_hiera_large.pt"
SAM2_MODEL_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
GROUNDING_MODEL = DetectionModel.GDino1_5_Pro # DetectionModel.GDino1_6_Pro
WITH_SLICE_INFERENCE = False
SLICE_WH = (480, 480)
OVERLAP_RATIO = (0.2, 0.2)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_gd1.5_demo")
DUMP_JSON_RESULTS = True
@@ -47,32 +51,88 @@ client = Client(config)
# Step 3: run the task by DetectionTask class
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
# if you are processing local image file, upload them to DDS server to get the image url
img_path = IMG_PATH
image_url = client.upload_file(img_path)
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text=TEXT_PROMPT)],
targets=[DetectionTarget.BBox], # detect bbox
model=GROUNDING_MODEL, # detect with GroundingDino-1.5-Pro model
)
classes = [x.strip().lower() for x in TEXT_PROMPT.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
client.run_task(task)
result = task.result
if WITH_SLICE_INFERENCE:
def callback(image_slice: np.ndarray) -> sv.Detections:
print("Inference on image slice")
# save the img as temp img file for GD-1.5 API usage
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
temp_filename = tmpfile.name
cv2.imwrite(temp_filename, image_slice)
image_url = client.upload_file(temp_filename)
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text=TEXT_PROMPT)],
targets=[DetectionTarget.BBox], # detect bbox
model=GROUNDING_MODEL, # detect with GroundingDino-1.5-Pro model
)
client.run_task(task)
result = task.result
# detele the tempfile
os.remove(temp_filename)
input_boxes = []
confidences = []
class_ids = []
objects = result.objects
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_ids.append(class_name_to_id[cls_name])
# ensure input_boxes with shape (_, 4)
input_boxes = np.array(input_boxes).reshape(-1, 4)
class_ids = np.array(class_ids)
confidences = np.array(confidences)
return sv.Detections(xyxy=input_boxes, confidence=confidences, class_id=class_ids)
slicer = sv.InferenceSlicer(
callback=callback,
slice_wh=SLICE_WH,
overlap_ratio_wh=OVERLAP_RATIO,
iou_threshold=0.5,
overlap_filter_strategy=sv.OverlapFilter.NON_MAX_SUPPRESSION
)
detections = slicer(cv2.imread(IMG_PATH))
class_names = [class_id_to_name[id] for id in detections.class_id]
confidences = detections.confidence
class_ids = detections.class_id
import pdb; pdb.set_trace()
input_boxes = detections.xyxy
else:
image_url = client.upload_file(IMG_PATH)
objects = result.objects # the list of detected objects
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text=TEXT_PROMPT)],
targets=[DetectionTarget.BBox], # detect bbox
model=GROUNDING_MODEL, # detect with GroundingDINO-1.5-Pro model
)
client.run_task(task)
result = task.result
objects = result.objects # the list of detected objects
input_boxes = []
confidences = []
class_names = []
input_boxes = []
confidences = []
class_names = []
class_ids = []
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
class_names.append(obj.category)
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
input_boxes = np.array(input_boxes)
input_boxes = np.array(input_boxes)
class_ids = np.array(class_ids)
"""
Init SAM 2 Model and Predict Mask with Box Prompt
@@ -93,7 +153,7 @@ model_cfg = SAM2_MODEL_CONFIG
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
sam2_predictor = SAM2ImagePredictor(sam2_model)
image = Image.open(img_path)
image = Image.open(IMG_PATH)
sam2_predictor.set_image(np.array(image.convert("RGB")))
@@ -117,8 +177,6 @@ if masks.ndim == 4:
Visualization the Predict Results
"""
class_ids = np.array(list(range(len(class_names))))
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
@@ -128,7 +186,7 @@ labels = [
"""
Visualize image with supervision useful API
"""
img = cv2.imread(img_path)
img = cv2.imread(IMG_PATH)
detections = sv.Detections(
xyxy=input_boxes, # (n, 4)
mask=masks.astype(bool), # (n, h, w)
@@ -168,7 +226,7 @@ if DUMP_JSON_RESULTS:
class_names = [class_name.strip() for class_name in class_names]
# save the results in standard format
results = {
"image_path": img_path,
"image_path": IMG_PATH,
"annotations" : [
{
"class_name": class_name,