2024-07-29 21:54:20 +00:00
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the sav_dataset directory of this source tree.
|
|
|
|
|
|
|
|
# adapted from https://github.com/hkchengrex/vos-benchmark
|
|
|
|
# and https://github.com/davisvideochallenge/davis2017-evaluation
|
|
|
|
# with their licenses found in the LICENSE_VOS_BENCHMARK and LICENSE_DAVIS files
|
|
|
|
# in the sav_dataset directory.
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
from collections import defaultdict
|
|
|
|
from multiprocessing import Pool
|
|
|
|
from os import path
|
|
|
|
from typing import Dict, List, Tuple
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import tqdm
|
|
|
|
from PIL import Image
|
|
|
|
from skimage.morphology import disk
|
|
|
|
|
|
|
|
|
|
|
|
class VideoEvaluator:
|
|
|
|
def __init__(self, gt_root, pred_root, skip_first_and_last=True) -> None:
|
|
|
|
"""
|
|
|
|
gt_root: path to the folder storing the gt masks
|
|
|
|
pred_root: path to the folder storing the predicted masks
|
|
|
|
skip_first_and_last: whether we should skip the evaluation of the first and the last frame.
|
|
|
|
True for SA-V val and test, same as in DAVIS semi-supervised evaluation.
|
|
|
|
"""
|
|
|
|
self.gt_root = gt_root
|
|
|
|
self.pred_root = pred_root
|
|
|
|
self.skip_first_and_last = skip_first_and_last
|
|
|
|
|
|
|
|
def __call__(self, vid_name: str) -> Tuple[str, Dict[str, float], Dict[str, float]]:
|
|
|
|
"""
|
|
|
|
vid_name: name of the video to evaluate
|
|
|
|
"""
|
|
|
|
|
|
|
|
# scan the folder to find subfolders for evaluation and
|
|
|
|
# check if the folder structure is SA-V
|
|
|
|
to_evaluate, is_sav_format = self.scan_vid_folder(vid_name)
|
|
|
|
|
|
|
|
# evaluate each (gt_path, pred_path) pair
|
|
|
|
eval_results = []
|
|
|
|
for all_frames, obj_id, gt_path, pred_path in to_evaluate:
|
|
|
|
if self.skip_first_and_last:
|
|
|
|
# skip the first and the last frames
|
|
|
|
all_frames = all_frames[1:-1]
|
|
|
|
|
|
|
|
evaluator = Evaluator(name=vid_name, obj_id=obj_id)
|
|
|
|
for frame in all_frames:
|
|
|
|
gt_array, pred_array = self.get_gt_and_pred(
|
|
|
|
gt_path, pred_path, frame, is_sav_format
|
|
|
|
)
|
|
|
|
evaluator.feed_frame(mask=pred_array, gt=gt_array)
|
|
|
|
|
|
|
|
iou, boundary_f = evaluator.conclude()
|
|
|
|
eval_results.append((obj_id, iou, boundary_f))
|
|
|
|
|
|
|
|
if is_sav_format:
|
|
|
|
iou_output, boundary_f_output = self.consolidate(eval_results)
|
|
|
|
else:
|
|
|
|
assert len(eval_results) == 1
|
|
|
|
iou_output = eval_results[0][1]
|
|
|
|
boundary_f_output = eval_results[0][2]
|
|
|
|
|
|
|
|
return vid_name, iou_output, boundary_f_output
|
|
|
|
|
|
|
|
def get_gt_and_pred(
|
|
|
|
self,
|
|
|
|
gt_path: str,
|
|
|
|
pred_path: str,
|
|
|
|
f_name: str,
|
|
|
|
is_sav_format: bool,
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
|
|
"""
|
|
|
|
Get the ground-truth and predicted masks for a single frame.
|
|
|
|
"""
|
|
|
|
gt_mask_path = path.join(gt_path, f_name)
|
|
|
|
pred_mask_path = path.join(pred_path, f_name)
|
|
|
|
assert os.path.exists(pred_mask_path), f"{pred_mask_path} not found"
|
|
|
|
|
|
|
|
gt_array = np.array(Image.open(gt_mask_path))
|
|
|
|
pred_array = np.array(Image.open(pred_mask_path))
|
|
|
|
assert (
|
|
|
|
gt_array.shape[-2:] == pred_array.shape[-2:]
|
|
|
|
), f"shape mismatch: {gt_mask_path}, {pred_mask_path}"
|
|
|
|
|
|
|
|
if is_sav_format:
|
|
|
|
assert len(np.unique(gt_array)) <= 2, (
|
|
|
|
f"found more than 1 object in {gt_mask_path} "
|
|
|
|
"SA-V format assumes one object mask per png file."
|
|
|
|
)
|
|
|
|
assert len(np.unique(pred_array)) <= 2, (
|
|
|
|
f"found more than 1 object in {pred_mask_path} "
|
|
|
|
"SA-V format assumes one object mask per png file."
|
|
|
|
)
|
|
|
|
gt_array = gt_array > 0
|
|
|
|
pred_array = pred_array > 0
|
|
|
|
|
|
|
|
return gt_array, pred_array
|
|
|
|
|
|
|
|
def scan_vid_folder(self, vid_name) -> Tuple[List, bool]:
|
|
|
|
"""
|
|
|
|
Scan the folder structure of the video and return a list of folders for evaluate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
vid_gt_path = path.join(self.gt_root, vid_name)
|
|
|
|
vid_pred_path = path.join(self.pred_root, vid_name)
|
|
|
|
all_files_and_dirs = sorted(os.listdir(vid_gt_path))
|
|
|
|
to_evaluate = []
|
|
|
|
if all(name.endswith(".png") for name in all_files_and_dirs):
|
|
|
|
# All files are png files, dataset structure similar to DAVIS
|
|
|
|
is_sav_format = False
|
|
|
|
frames = all_files_and_dirs
|
|
|
|
obj_dir = None
|
|
|
|
to_evaluate.append((frames, obj_dir, vid_gt_path, vid_pred_path))
|
|
|
|
else:
|
|
|
|
# SA-V dataset structure, going one layer down into each subdirectory
|
|
|
|
is_sav_format = True
|
|
|
|
for obj_dir in all_files_and_dirs:
|
|
|
|
obj_gt_path = path.join(vid_gt_path, obj_dir)
|
|
|
|
obj_pred_path = path.join(vid_pred_path, obj_dir)
|
|
|
|
frames = sorted(os.listdir(obj_gt_path))
|
|
|
|
to_evaluate.append((frames, obj_dir, obj_gt_path, obj_pred_path))
|
|
|
|
return to_evaluate, is_sav_format
|
|
|
|
|
|
|
|
def consolidate(
|
|
|
|
self, eval_results
|
|
|
|
) -> Tuple[str, Dict[str, float], Dict[str, float]]:
|
|
|
|
"""
|
|
|
|
Consolidate the results of all the objects from the video into one dictionary.
|
|
|
|
"""
|
|
|
|
iou_output = {}
|
|
|
|
boundary_f_output = {}
|
|
|
|
for obj_id, iou, boundary_f in eval_results:
|
|
|
|
assert len(iou) == 1
|
|
|
|
key = list(iou.keys())[0]
|
|
|
|
iou_output[obj_id] = iou[key]
|
|
|
|
boundary_f_output[obj_id] = boundary_f[key]
|
|
|
|
return iou_output, boundary_f_output
|
|
|
|
|
|
|
|
|
|
|
|
#################################################################################################################
|
|
|
|
# Functions below are from https://github.com/hkchengrex/vos-benchmark with minor modifications
|
|
|
|
# _seg2bmap from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/utils.py
|
|
|
|
# get_iou and Evaluator from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/evaluator.py
|
|
|
|
# benchmark from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/benchmark.py with slight mod
|
|
|
|
#################################################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
def _seg2bmap(seg, width=None, height=None):
|
|
|
|
"""
|
|
|
|
From a segmentation, compute a binary boundary map with 1 pixel wide
|
|
|
|
boundaries. The boundary pixels are offset by 1/2 pixel towards the
|
|
|
|
origin from the actual segment boundary.
|
|
|
|
Arguments:
|
|
|
|
seg : Segments labeled from 1..k.
|
|
|
|
width : Width of desired bmap <= seg.shape[1]
|
|
|
|
height : Height of desired bmap <= seg.shape[0]
|
|
|
|
Returns:
|
|
|
|
bmap (ndarray): Binary boundary map.
|
|
|
|
David Martin <dmartin@eecs.berkeley.edu>
|
|
|
|
January 2003
|
|
|
|
"""
|
|
|
|
|
|
|
|
seg = seg.astype(bool)
|
|
|
|
seg[seg > 0] = 1
|
|
|
|
|
|
|
|
assert np.atleast_3d(seg).shape[2] == 1
|
|
|
|
|
|
|
|
width = seg.shape[1] if width is None else width
|
|
|
|
height = seg.shape[0] if height is None else height
|
|
|
|
|
|
|
|
h, w = seg.shape[:2]
|
|
|
|
|
|
|
|
ar1 = float(width) / float(height)
|
|
|
|
ar2 = float(w) / float(h)
|
|
|
|
|
|
|
|
assert not (
|
|
|
|
width > w | height > h | abs(ar1 - ar2) > 0.01
|
2024-08-14 09:06:25 -07:00
|
|
|
), "Cannot convert %dx%d seg to %dx%d bmap." % (w, h, width, height)
|
2024-07-29 21:54:20 +00:00
|
|
|
|
|
|
|
e = np.zeros_like(seg)
|
|
|
|
s = np.zeros_like(seg)
|
|
|
|
se = np.zeros_like(seg)
|
|
|
|
|
|
|
|
e[:, :-1] = seg[:, 1:]
|
|
|
|
s[:-1, :] = seg[1:, :]
|
|
|
|
se[:-1, :-1] = seg[1:, 1:]
|
|
|
|
|
|
|
|
b = seg ^ e | seg ^ s | seg ^ se
|
|
|
|
b[-1, :] = seg[-1, :] ^ e[-1, :]
|
|
|
|
b[:, -1] = seg[:, -1] ^ s[:, -1]
|
|
|
|
b[-1, -1] = 0
|
|
|
|
|
|
|
|
if w == width and h == height:
|
|
|
|
bmap = b
|
|
|
|
else:
|
|
|
|
bmap = np.zeros((height, width))
|
|
|
|
for x in range(w):
|
|
|
|
for y in range(h):
|
|
|
|
if b[y, x]:
|
|
|
|
j = 1 + math.floor((y - 1) + height / h)
|
|
|
|
i = 1 + math.floor((x - 1) + width / h)
|
|
|
|
bmap[j, i] = 1
|
|
|
|
|
|
|
|
return bmap
|
|
|
|
|
|
|
|
|
|
|
|
def get_iou(intersection, pixel_sum):
|
|
|
|
# handle edge cases without resorting to epsilon
|
|
|
|
if intersection == pixel_sum:
|
|
|
|
# both mask and gt have zero pixels in them
|
|
|
|
assert intersection == 0
|
|
|
|
return 1
|
|
|
|
|
|
|
|
return intersection / (pixel_sum - intersection)
|
|
|
|
|
|
|
|
|
|
|
|
class Evaluator:
|
|
|
|
def __init__(self, boundary=0.008, name=None, obj_id=None):
|
|
|
|
# boundary: used in computing boundary F-score
|
|
|
|
self.boundary = boundary
|
|
|
|
self.name = name
|
|
|
|
self.obj_id = obj_id
|
|
|
|
self.objects_in_gt = set()
|
|
|
|
self.objects_in_masks = set()
|
|
|
|
|
|
|
|
self.object_iou = defaultdict(list)
|
|
|
|
self.boundary_f = defaultdict(list)
|
|
|
|
|
|
|
|
def feed_frame(self, mask: np.ndarray, gt: np.ndarray):
|
|
|
|
"""
|
|
|
|
Compute and accumulate metrics for a single frame (mask/gt pair)
|
|
|
|
"""
|
|
|
|
|
|
|
|
# get all objects in the ground-truth
|
|
|
|
gt_objects = np.unique(gt)
|
|
|
|
gt_objects = gt_objects[gt_objects != 0].tolist()
|
|
|
|
|
|
|
|
# get all objects in the predicted mask
|
|
|
|
mask_objects = np.unique(mask)
|
|
|
|
mask_objects = mask_objects[mask_objects != 0].tolist()
|
|
|
|
|
|
|
|
self.objects_in_gt.update(set(gt_objects))
|
|
|
|
self.objects_in_masks.update(set(mask_objects))
|
|
|
|
|
|
|
|
all_objects = self.objects_in_gt.union(self.objects_in_masks)
|
|
|
|
|
|
|
|
# boundary disk for boundary F-score. It is the same for all objects.
|
|
|
|
bound_pix = np.ceil(self.boundary * np.linalg.norm(mask.shape))
|
|
|
|
boundary_disk = disk(bound_pix)
|
|
|
|
|
|
|
|
for obj_idx in all_objects:
|
|
|
|
obj_mask = mask == obj_idx
|
|
|
|
obj_gt = gt == obj_idx
|
|
|
|
|
|
|
|
# object iou
|
|
|
|
self.object_iou[obj_idx].append(
|
|
|
|
get_iou((obj_mask * obj_gt).sum(), obj_mask.sum() + obj_gt.sum())
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
# boundary f-score
|
|
|
|
This part is copied from davis2017-evaluation
|
|
|
|
"""
|
|
|
|
mask_boundary = _seg2bmap(obj_mask)
|
|
|
|
gt_boundary = _seg2bmap(obj_gt)
|
|
|
|
mask_dilated = cv2.dilate(mask_boundary.astype(np.uint8), boundary_disk)
|
|
|
|
gt_dilated = cv2.dilate(gt_boundary.astype(np.uint8), boundary_disk)
|
|
|
|
|
|
|
|
# Get the intersection
|
|
|
|
gt_match = gt_boundary * mask_dilated
|
|
|
|
fg_match = mask_boundary * gt_dilated
|
|
|
|
|
|
|
|
# Area of the intersection
|
|
|
|
n_fg = np.sum(mask_boundary)
|
|
|
|
n_gt = np.sum(gt_boundary)
|
|
|
|
|
|
|
|
# Compute precision and recall
|
|
|
|
if n_fg == 0 and n_gt > 0:
|
|
|
|
precision = 1
|
|
|
|
recall = 0
|
|
|
|
elif n_fg > 0 and n_gt == 0:
|
|
|
|
precision = 0
|
|
|
|
recall = 1
|
|
|
|
elif n_fg == 0 and n_gt == 0:
|
|
|
|
precision = 1
|
|
|
|
recall = 1
|
|
|
|
else:
|
|
|
|
precision = np.sum(fg_match) / float(n_fg)
|
|
|
|
recall = np.sum(gt_match) / float(n_gt)
|
|
|
|
|
|
|
|
# Compute F measure
|
|
|
|
if precision + recall == 0:
|
|
|
|
F = 0
|
|
|
|
else:
|
|
|
|
F = 2 * precision * recall / (precision + recall)
|
|
|
|
self.boundary_f[obj_idx].append(F)
|
|
|
|
|
|
|
|
def conclude(self):
|
|
|
|
all_iou = {}
|
|
|
|
all_boundary_f = {}
|
|
|
|
|
|
|
|
for object_id in self.objects_in_gt:
|
|
|
|
all_iou[object_id] = np.mean(self.object_iou[object_id]) * 100
|
|
|
|
all_boundary_f[object_id] = np.mean(self.boundary_f[object_id]) * 100
|
|
|
|
|
|
|
|
return all_iou, all_boundary_f
|
|
|
|
|
|
|
|
|
|
|
|
def benchmark(
|
|
|
|
gt_roots,
|
|
|
|
mask_roots,
|
|
|
|
strict=True,
|
|
|
|
num_processes=None,
|
|
|
|
*,
|
|
|
|
verbose=True,
|
|
|
|
skip_first_and_last=True,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
gt_roots: a list of paths to datasets, i.e., [path_to_DatasetA, path_to_DatasetB, ...]
|
|
|
|
mask_roots: same as above, but the .png are masks predicted by the model
|
|
|
|
strict: when True, all videos in the dataset must have corresponding predictions.
|
|
|
|
Setting it to False is useful in cases where the ground-truth contains both train/val
|
|
|
|
sets, but the model only predicts the val subset.
|
|
|
|
Either way, if a video is predicted (i.e., the corresponding folder exists),
|
|
|
|
then it must at least contain all the masks in the ground truth annotations.
|
|
|
|
Masks that are in the prediction but not in the ground-truth
|
|
|
|
(i.e., sparse annotations) are ignored.
|
|
|
|
skip_first_and_last: whether we should skip the first and the last frame in evaluation.
|
|
|
|
This is used by DAVIS 2017 in their semi-supervised evaluation.
|
|
|
|
It should be disabled for unsupervised evaluation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert len(gt_roots) == len(mask_roots)
|
|
|
|
single_dataset = len(gt_roots) == 1
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
if skip_first_and_last:
|
|
|
|
print(
|
|
|
|
"We are *SKIPPING* the evaluation of the first and the last frame (standard for semi-supervised video object segmentation)."
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
print(
|
|
|
|
"We are *NOT SKIPPING* the evaluation of the first and the last frame (*NOT STANDARD* for semi-supervised video object segmentation)."
|
|
|
|
)
|
|
|
|
|
|
|
|
pool = Pool(num_processes)
|
|
|
|
start = time.time()
|
|
|
|
to_wait = []
|
|
|
|
for gt_root, mask_root in zip(gt_roots, mask_roots):
|
|
|
|
# Validate folders
|
|
|
|
validated = True
|
|
|
|
gt_videos = os.listdir(gt_root)
|
|
|
|
mask_videos = os.listdir(mask_root)
|
|
|
|
|
|
|
|
# if the user passed the root directory instead of Annotations
|
|
|
|
if len(gt_videos) != len(mask_videos):
|
|
|
|
if "Annotations" in gt_videos:
|
|
|
|
if ".png" not in os.listdir(path.join(gt_root, "Annotations"))[0]:
|
|
|
|
gt_root = path.join(gt_root, "Annotations")
|
|
|
|
gt_videos = os.listdir(gt_root)
|
|
|
|
|
|
|
|
# remove non-folder items
|
|
|
|
gt_videos = list(filter(lambda x: path.isdir(path.join(gt_root, x)), gt_videos))
|
|
|
|
mask_videos = list(
|
|
|
|
filter(lambda x: path.isdir(path.join(mask_root, x)), mask_videos)
|
|
|
|
)
|
|
|
|
|
|
|
|
if not strict:
|
|
|
|
videos = sorted(list(set(gt_videos) & set(mask_videos)))
|
|
|
|
else:
|
|
|
|
gt_extras = set(gt_videos) - set(mask_videos)
|
|
|
|
mask_extras = set(mask_videos) - set(gt_videos)
|
|
|
|
|
|
|
|
if len(gt_extras) > 0:
|
|
|
|
print(
|
|
|
|
f"Videos that are in {gt_root} but not in {mask_root}: {gt_extras}"
|
|
|
|
)
|
|
|
|
validated = False
|
|
|
|
if len(mask_extras) > 0:
|
|
|
|
print(
|
|
|
|
f"Videos that are in {mask_root} but not in {gt_root}: {mask_extras}"
|
|
|
|
)
|
|
|
|
validated = False
|
|
|
|
if not validated:
|
|
|
|
print("Validation failed. Exiting.")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
videos = sorted(gt_videos)
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
print(
|
|
|
|
f"In dataset {gt_root}, we are evaluating on {len(videos)} videos: {videos}"
|
|
|
|
)
|
|
|
|
|
|
|
|
if single_dataset:
|
|
|
|
if verbose:
|
|
|
|
results = tqdm.tqdm(
|
|
|
|
pool.imap(
|
|
|
|
VideoEvaluator(
|
|
|
|
gt_root, mask_root, skip_first_and_last=skip_first_and_last
|
|
|
|
),
|
|
|
|
videos,
|
|
|
|
),
|
|
|
|
total=len(videos),
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
results = pool.map(
|
|
|
|
VideoEvaluator(
|
|
|
|
gt_root, mask_root, skip_first_and_last=skip_first_and_last
|
|
|
|
),
|
|
|
|
videos,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
to_wait.append(
|
|
|
|
pool.map_async(
|
|
|
|
VideoEvaluator(
|
|
|
|
gt_root, mask_root, skip_first_and_last=skip_first_and_last
|
|
|
|
),
|
|
|
|
videos,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
pool.close()
|
|
|
|
|
|
|
|
all_global_jf, all_global_j, all_global_f = [], [], []
|
|
|
|
all_object_metrics = []
|
|
|
|
for i, mask_root in enumerate(mask_roots):
|
|
|
|
if not single_dataset:
|
|
|
|
results = to_wait[i].get()
|
|
|
|
|
|
|
|
all_iou = []
|
|
|
|
all_boundary_f = []
|
|
|
|
object_metrics = {}
|
|
|
|
for name, iou, boundary_f in results:
|
|
|
|
all_iou.extend(list(iou.values()))
|
|
|
|
all_boundary_f.extend(list(boundary_f.values()))
|
|
|
|
object_metrics[name] = (iou, boundary_f)
|
|
|
|
|
|
|
|
global_j = np.array(all_iou).mean()
|
|
|
|
global_f = np.array(all_boundary_f).mean()
|
|
|
|
global_jf = (global_j + global_f) / 2
|
|
|
|
|
|
|
|
time_taken = time.time() - start
|
|
|
|
"""
|
|
|
|
Build string for reporting results
|
|
|
|
"""
|
|
|
|
# find max length for padding
|
|
|
|
ml = max(*[len(n) for n in object_metrics.keys()], len("Global score"))
|
|
|
|
# build header
|
|
|
|
out_string = f'{"sequence":<{ml}},{"obj":>3}, {"J&F":>4}, {"J":>4}, {"F":>4}\n'
|
|
|
|
out_string += f'{"Global score":<{ml}},{"":>3}, {global_jf:.1f}, {global_j:.1f}, {global_f:.1f}\n'
|
|
|
|
# append one line for each object
|
|
|
|
for name, (iou, boundary_f) in object_metrics.items():
|
|
|
|
for object_idx in iou.keys():
|
|
|
|
j, f = iou[object_idx], boundary_f[object_idx]
|
|
|
|
jf = (j + f) / 2
|
|
|
|
out_string += (
|
|
|
|
f"{name:<{ml}},{object_idx:03}, {jf:>4.1f}, {j:>4.1f}, {f:>4.1f}\n"
|
|
|
|
)
|
|
|
|
|
|
|
|
# print to console
|
|
|
|
if verbose:
|
|
|
|
print(out_string.replace(",", " "), end="")
|
|
|
|
print("\nSummary:")
|
|
|
|
print(
|
|
|
|
f"Global score: J&F: {global_jf:.1f} J: {global_j:.1f} F: {global_f:.1f}"
|
|
|
|
)
|
|
|
|
print(f"Time taken: {time_taken:.2f}s")
|
|
|
|
|
|
|
|
# print to file
|
|
|
|
result_path = path.join(mask_root, "results.csv")
|
|
|
|
print(f"Saving the results to {result_path}")
|
|
|
|
with open(result_path, "w") as f:
|
|
|
|
f.write(out_string)
|
|
|
|
|
|
|
|
all_global_jf.append(global_jf)
|
|
|
|
all_global_j.append(global_j)
|
|
|
|
all_global_f.append(global_f)
|
|
|
|
all_object_metrics.append(object_metrics)
|
|
|
|
|
|
|
|
return all_global_jf, all_global_j, all_global_f, all_object_metrics
|