Files
Grounded-SAM-2/lib/train/run_training.py

114 lines
5.1 KiB
Python
Raw Normal View History

2024-11-19 22:12:54 -08:00
import os
import sys
import argparse
import importlib
import cv2 as cv
import torch.backends.cudnn
import torch.distributed as dist
import torch
import random
import numpy as np
torch.backends.cudnn.benchmark = False
import _init_paths
import lib.train.admin.settings as ws_settings
def init_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.set_num_threads(4)
cv.setNumThreads(1)
cv.ocl.setUseOpenCL(False)
def run_training(script_name, config_name, cudnn_benchmark=True, local_rank=-1, save_dir=None, base_seed=None,
use_lmdb=False, script_name_prv=None, config_name_prv=None, use_wandb=False,
distill=None, script_teacher=None, config_teacher=None):
"""Run the train script.
args:
script_name: Name of emperiment in the "experiments/" folder.
config_name: Name of the yaml file in the "experiments/<script_name>".
cudnn_benchmark: Use cudnn benchmark or not (default is True).
"""
if save_dir is None:
print("save_dir dir is not given. Use the default dir instead.")
# This is needed to avoid strange crashes related to opencv
torch.set_num_threads(4)
cv.setNumThreads(4)
torch.backends.cudnn.benchmark = cudnn_benchmark
print('script_name: {}.py config_name: {}.yaml'.format(script_name, config_name))
'''2021.1.5 set seed for different process'''
if base_seed is not None:
if local_rank != -1:
init_seeds(base_seed + local_rank)
else:
init_seeds(base_seed)
settings = ws_settings.Settings()
settings.script_name = script_name
settings.config_name = config_name
settings.project_path = 'train/{}/{}'.format(script_name, config_name)
if script_name_prv is not None and config_name_prv is not None:
settings.project_path_prv = 'train/{}/{}'.format(script_name_prv, config_name_prv)
settings.local_rank = local_rank
settings.save_dir = os.path.abspath(save_dir)
settings.use_lmdb = use_lmdb
prj_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
settings.cfg_file = os.path.join(prj_dir, 'experiments/%s/%s.yaml' % (script_name, config_name))
settings.use_wandb = use_wandb
if distill:
settings.distill = distill
settings.script_teacher = script_teacher
settings.config_teacher = config_teacher
if script_teacher is not None and config_teacher is not None:
settings.project_path_teacher = 'train/{}/{}'.format(script_teacher, config_teacher)
settings.cfg_file_teacher = os.path.join(prj_dir, 'experiments/%s/%s.yaml' % (script_teacher, config_teacher))
expr_module = importlib.import_module('lib.train.train_script_distill')
else:
expr_module = importlib.import_module('lib.train.train_script')
expr_func = getattr(expr_module, 'run')
expr_func(settings)
def main():
parser = argparse.ArgumentParser(description='Run a train scripts in train_settings.')
parser.add_argument('--script', type=str, required=True, help='Name of the train script.')
parser.add_argument('--config', type=str, required=True, help="Name of the config file.")
parser.add_argument('--cudnn_benchmark', type=bool, default=False, help='Set cudnn benchmark on (1) or off (0) (default is on).')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--save_dir', type=str, help='the directory to save checkpoints and logs')
parser.add_argument('--seed', type=int, default=42, help='seed for random numbers')
parser.add_argument('--use_lmdb', type=int, choices=[0, 1], default=0) # whether datasets are in lmdb format
parser.add_argument('--script_prv', type=str, default=None, help='Name of the train script of previous model.')
parser.add_argument('--config_prv', type=str, default=None, help="Name of the config file of previous model.")
parser.add_argument('--use_wandb', type=int, choices=[0, 1], default=0) # whether to use wandb
# for knowledge distillation
parser.add_argument('--distill', type=int, choices=[0, 1], default=0) # whether to use knowledge distillation
parser.add_argument('--script_teacher', type=str, help='teacher script name')
parser.add_argument('--config_teacher', type=str, help='teacher yaml configure file name')
args = parser.parse_args()
if args.local_rank != -1:
dist.init_process_group(backend='nccl')
torch.cuda.set_device(args.local_rank)
else:
torch.cuda.set_device(0)
run_training(args.script, args.config, cudnn_benchmark=args.cudnn_benchmark,
local_rank=args.local_rank, save_dir=args.save_dir, base_seed=args.seed,
use_lmdb=args.use_lmdb, script_name_prv=args.script_prv, config_name_prv=args.config_prv,
use_wandb=args.use_wandb,
distill=args.distill, script_teacher=args.script_teacher, config_teacher=args.config_teacher)
if __name__ == '__main__':
main()