done 7 transformations

This commit is contained in:
Nguyễn Phước Thành
2025-08-05 21:42:23 +07:00
parent 3fd270c8bd
commit 96a1de908f
6 changed files with 706 additions and 30 deletions

309
README.md Normal file
View File

@@ -0,0 +1,309 @@
# ID Cards Data Augmentation Tool
A comprehensive data augmentation tool specifically designed for ID card images, implementing 7 different augmentation techniques to simulate real-world scenarios.
## 🎯 Overview
This tool provides data augmentation capabilities for ID card images, implementing various transformation techniques that mimic real-world conditions such as worn-out cards, partial occlusion, different lighting conditions, and more.
## ✨ Features
### 7 Augmentation Techniques
1. **Rotation** - Simulates cards at different angles
2. **Random Cropping** - Simulates partially visible cards
3. **Random Noise** - Simulates worn-out cards
4. **Horizontal Blockage** - Simulates occluded card details
5. **Grayscale Transformation** - Simulates Xerox/scan copies
6. **Blurring** - Simulates blurred but readable cards
7. **Brightness & Contrast** - Simulates different lighting conditions
### Key Features
- **Separate Methods**: Each augmentation technique is applied independently
- **Quality Preservation**: Maintains image quality with white background preservation
- **OpenCV Integration**: Uses OpenCV functions for reliable image processing
- **Configurable**: Easy configuration through YAML files
- **Progress Tracking**: Real-time progress monitoring
- **Batch Processing**: Process multiple images efficiently
## 🚀 Installation
### Prerequisites
- Python 3.7+
- OpenCV
- NumPy
- PyYAML
- PIL (Pillow)
### Setup
1. **Clone the repository**:
```bash
git clone <repository-url>
cd IDcardsGenerator
```
2. **Install dependencies**:
```bash
pip install opencv-python numpy pyyaml pillow
```
3. **Activate conda environment** (if using GPU):
```bash
conda activate gpu
```
## 📁 Project Structure
```
IDcardsGenerator/
├── config/
│ └── config.yaml # Main configuration file
├── data/
│ └── IDcards/
│ └── processed/ # Input images directory
├── src/
│ ├── data_augmentation.py # Core augmentation logic
│ ├── config_manager.py # Configuration management
│ ├── image_processor.py # Image processing utilities
│ └── utils.py # Utility functions
├── logs/ # Log files
├── out/ # Output directory
└── main.py # Main script
```
## ⚙️ Configuration
### Main Configuration (`config/config.yaml`)
```yaml
# Data augmentation parameters
augmentation:
# Rotation
rotation:
enabled: true
angles: [30, 60, 120, 150, 180, 210, 240, 300, 330]
probability: 1.0
# Random cropping
random_cropping:
enabled: true
ratio_range: [0.7, 1.0]
probability: 1.0
# Random noise
random_noise:
enabled: true
mean_range: [0.0, 0.7]
variance_range: [0.0, 0.1]
probability: 1.0
# Partial blockage
partial_blockage:
enabled: true
num_occlusions_range: [1, 100]
coverage_range: [0.0, 0.25]
variance_range: [0.0, 0.1]
probability: 1.0
# Grayscale transformation
grayscale:
enabled: true
probability: 1.0
# Blurring
blurring:
enabled: true
kernel_ratio_range: [0.0, 0.0084]
probability: 1.0
# Brightness and contrast
brightness_contrast:
enabled: true
alpha_range: [0.4, 3.0]
beta_range: [1, 100]
probability: 1.0
# Processing configuration
processing:
target_size: [640, 640]
num_augmentations: 3
save_format: "jpg"
quality: 95
```
## 🎮 Usage
### Basic Usage
```bash
python main.py --input-dir data/IDcards/processed --output-dir out
```
### Command Line Options
```bash
python main.py [OPTIONS]
Options:
--config CONFIG Path to configuration file (default: config/config.yaml)
--input-dir INPUT_DIR Input directory containing images
--output-dir OUTPUT_DIR Output directory for augmented images
--num-augmentations N Number of augmented versions per image (default: 3)
--target-size SIZE Target size for images (width x height)
--preview Preview augmentation on first image only
--info Show information about images in input directory
--list-presets List available presets and exit
--log-level LEVEL Logging level (DEBUG, INFO, WARNING, ERROR)
```
### Examples
1. **Preview augmentation**:
```bash
python main.py --preview --input-dir data/IDcards/processed --output-dir test_output
```
2. **Show image information**:
```bash
python main.py --info --input-dir data/IDcards/processed
```
3. **Custom number of augmentations**:
```bash
python main.py --input-dir data/IDcards/processed --output-dir out --num-augmentations 5
```
4. **Custom target size**:
```bash
python main.py --input-dir data/IDcards/processed --output-dir out --target-size 512x512
```
## 📊 Output
### File Naming Convention
The tool creates separate files for each augmentation method:
```
im1_rotation_01.png # Rotation method
im1_cropping_01.png # Random cropping method
im1_noise_01.png # Random noise method
im1_blockage_01.png # Partial blockage method
im1_grayscale_01.png # Grayscale method
im1_blurring_01.png # Blurring method
im1_brightness_contrast_01.png # Brightness/contrast method
```
### Output Summary
After processing, you'll see a summary like:
```
==================================================
AUGMENTATION SUMMARY
==================================================
Original images: 106
Augmented images: 2226
Augmentation ratio: 21.00
Successful augmentations: 106
Output directory: out
==================================================
```
## 🔧 Augmentation Techniques Details
### 1. Rotation
- **Purpose**: Simulates cards at different angles
- **Angles**: 30°, 60°, 120°, 150°, 180°, 210°, 240°, 300°, 330°
- **Method**: OpenCV rotation with white background preservation
### 2. Random Cropping
- **Purpose**: Simulates partially visible ID cards
- **Ratio Range**: 0.7 to 1.0 (70% to 100% of original size)
- **Method**: Random crop with white background preservation
### 3. Random Noise
- **Purpose**: Simulates worn-out cards
- **Mean Range**: 0.0 to 0.7
- **Variance Range**: 0.0 to 0.1
- **Method**: Gaussian noise addition
### 4. Horizontal Blockage
- **Purpose**: Simulates occluded card details
- **Lines**: 1 to 100 horizontal lines
- **Coverage**: 0% to 25% of image area
- **Colors**: Multiple colors to simulate various objects
### 5. Grayscale Transformation
- **Purpose**: Simulates Xerox/scan copies
- **Method**: OpenCV `cv2.cvtColor()` function
- **Output**: 3-channel grayscale image
### 6. Blurring
- **Purpose**: Simulates blurred but readable cards
- **Kernel Ratio**: 0.0 to 0.0084
- **Method**: OpenCV `cv2.filter2D()` with Gaussian kernel
### 7. Brightness & Contrast
- **Purpose**: Simulates different lighting conditions
- **Alpha Range**: 0.4 to 3.0 (contrast)
- **Beta Range**: 1 to 100 (brightness)
- **Method**: OpenCV `cv2.convertScaleAbs()`
## 🛠️ Development
### Adding New Augmentation Methods
1. Add the method to `src/data_augmentation.py`
2. Update configuration in `config/config.yaml`
3. Update default config in `src/config_manager.py`
4. Test with preview mode
### Code Structure
- **`main.py`**: Entry point and command-line interface
- **`src/data_augmentation.py`**: Core augmentation logic
- **`src/config_manager.py`**: Configuration management
- **`src/image_processor.py`**: Image processing utilities
- **`src/utils.py`**: Utility functions
## 📝 Logging
The tool provides comprehensive logging:
- **File logging**: `logs/data_augmentation.log`
- **Console logging**: Real-time progress updates
- **Log levels**: DEBUG, INFO, WARNING, ERROR
## 🤝 Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Test thoroughly
5. Submit a pull request
## 📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
## 🙏 Acknowledgments
- OpenCV for image processing capabilities
- NumPy for numerical operations
- PyYAML for configuration management
## 📞 Support
For issues and questions:
1. Check the logs in `logs/data_augmentation.log`
2. Review the configuration in `config/config.yaml`
3. Test with preview mode first
4. Create an issue with detailed information
---
**Note**: This tool is specifically designed for ID card augmentation and may need adjustments for other image types.