embedding-clustering/clustering_example.ipynb
2025-07-10 09:04:48 +00:00

206 lines
7.0 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "59f8a415",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor\n",
"from qwen_vl_utils import process_vision_info\n",
"from PIL import Image\n",
"import os\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"# --- Configuration ---\n",
"MODEL_NAME = \"Qwen/Qwen2.5-VL-3B-Instruct\" # You can choose other model sizes\n",
"IMAGE_DIR = \"/home/nguyendc/phat-dev/clustering/extracted_images\"\n",
"BATCH_SIZE = 4\n",
"# --- End Configuration ---\n",
"\n",
"# Check for GPU availability\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"print(f\"Using device: {device}\")\n",
"\n",
"# Load the model and processor\n",
"model = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n",
" MODEL_NAME, torch_dtype=\"bfloat16\", device_map=\"cuda\", attn_implementation=\"flash_attention_2\",\n",
")\n",
"processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdfdab0e",
"metadata": {},
"outputs": [],
"source": [
"def get_image_embeddings(image_paths):\n",
" \"\"\"\n",
" Processes a batch of images and extracts their embeddings.\n",
" \"\"\"\n",
" images_pil = []\n",
" valid_paths = []\n",
" for path in image_paths:\n",
" if path.lower().endswith(('.png', '.jpg', '.jpeg')):\n",
" try:\n",
" # The processor expects PIL images in RGB format\n",
" images_pil.append(Image.open(path).convert(\"RGB\"))\n",
" valid_paths.append(path)\n",
" except Exception as e:\n",
" print(f\"Warning: Could not load image {path}. Skipping. Error: {e}\")\n",
"\n",
" if not images_pil:\n",
" return np.array([]), []\n",
"\n",
" # For pure vision feature extraction, we can provide an empty text prompt.\n",
" # The processor handles tokenizing text and preparing images.\n",
" inputs = processor(\n",
" text=[\"\"] * len(images_pil),\n",
" images=images_pil,\n",
" padding=True,\n",
" return_tensors=\"pt\"\n",
" ).to(device)\n",
"\n",
" with torch.no_grad():\n",
" # Get the vision embeddings from the model's vision tower\n",
" vision_outputs = model.visual(inputs['pixel_values'].to(dtype=model.dtype), grid_thw=inputs['image_grid_thw'])\n",
" # We'll use the pooled output as the embedding\n",
" embeddings = vision_outputs\n",
"\n",
" return embeddings.to(torch.float16).cpu().numpy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdaebb7b",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"# --- Process all images in the directory ---\n",
"image_files = [os.path.join(IMAGE_DIR, f) for f in os.listdir(IMAGE_DIR) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
"all_embeddings = []\n",
"filepaths = []\n",
"\n",
"with open(\"embeddings_factures_osteopathie_1k_qwen.json\", \"w\") as f:\n",
" f.write(\"[\\n\")\n",
" first = True\n",
" for i in tqdm(range(0, len(image_files), BATCH_SIZE)):\n",
" batch_paths = image_files[i:i+BATCH_SIZE]\n",
" batch_embeddings = get_image_embeddings(batch_paths)\n",
" embeddings_list = [emb.tolist() for emb in batch_embeddings]\n",
" for path, emb in zip(batch_paths, embeddings_list):\n",
" if not first:\n",
" f.write(\",\\n\")\n",
" json.dump({\"filepath\": path, \"embedding\": emb}, f)\n",
" first = False\n",
" f.write(\"\\n]\\n\")\n",
"\n",
"print(\"Embeddings extracted and saved.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27fea4f3",
"metadata": {},
"outputs": [],
"source": [
"import fiftyone as fo\n",
"import fiftyone.brain as fob\n",
"import numpy as np\n",
"from sklearn.mixture import GaussianMixture\n",
"import json\n",
"\n",
"DATASET_NAME = \"mock\"\n",
"\n",
"json_path = \"./embeddings_factures_osteopathie_1k_qwen.json\"\n",
"\n",
"with open(json_path, \"r\") as file:\n",
" embedding_data = json.load(file)\n",
"\n",
"file_paths = []\n",
"embeddings = []\n",
"for i, record in enumerate(embedding_data):\n",
" file_paths.append(record.get(\"filepath\"))\n",
" embeddings.append(record.get(\"embedding\"))\n",
"\n",
"if DATASET_NAME in fo.list_datasets():\n",
" dataset = fo.load_dataset(DATASET_NAME)\n",
" dataset.delete()\n",
"dataset = fo.Dataset(DATASET_NAME)\n",
"\n",
"# Add samples to the dataset\n",
"samples = [fo.Sample(filepath=p) for p in file_paths]\n",
"dataset.add_samples(samples)\n",
"\n",
"# Building Gaussian mixture model (GMM)\n",
"n_gaussians = 50\n",
"gmm = GaussianMixture(n_components=n_gaussians, random_state=42)\n",
"gmm.fit(embeddings)\n",
"cluster_labels = gmm.predict(embeddings)\n",
"\n",
"# Adding labeled embeddings to visulization\n",
"dataset.add_sample_field(\"gmm_cluster\", fo.IntField)\n",
"for sample, label in zip(dataset, cluster_labels):\n",
" sample[\"gmm_cluster_50_gaussians\"] = int(label)\n",
" sample.save()\n",
"\n",
"n_gaussians = 200\n",
"gmm = GaussianMixture(n_components=n_gaussians, random_state=42)\n",
"gmm.fit(embeddings)\n",
"cluster_labels = gmm.predict(embeddings)\n",
"\n",
"# Adding labeled embeddings to visulization\n",
"dataset.add_sample_field(\"gmm_cluster\", fo.IntField)\n",
"for sample, label in zip(dataset, cluster_labels):\n",
" sample[\"gmm_cluster_200_gaussians\"] = int(label)\n",
" sample.save()\n",
"\n",
"# --- Visualize the Embeddings with UMAP ---\n",
"# This will compute a 2D representation of your embeddings\n",
"# for visualization.\n",
"res = fob.compute_visualization(\n",
" dataset,\n",
" embeddings=embeddings,\n",
" brain_key=\"qwen_vision_viz\",\n",
" method=\"tsne\",\n",
" verbose=True\n",
")\n",
"dataset.set_values(\"qwen_umap\", res.current_points)\n",
"\n",
"print(\"UMAP visualization computed. Launch the app to see the plot.\")\n",
"session = fo.launch_app(dataset)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "sesame",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}